计算机组成原理重点整理(白中英版).doc
《计算机组成原理重点整理(白中英版).doc》由会员分享,可在线阅读,更多相关《计算机组成原理重点整理(白中英版).doc(83页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date计算机组成原理重点整理(白中英版)计算机组成原理重点整理(白中英版)浮点存储:1若浮点数x的754标准存储格式为(41360000)16,求其浮点数的十进制数值。解:将16进制数展开后,可得二制数格式为 0 100 00010011 0110 0000 0000 0000 0000 S 阶码(8位) 尾数(23位)指数e=阶码-127=10000010-0111111
2、1=00000011=(3)10包括隐藏位1的尾数1.M=1.011 0110 0000 0000 0000 0000=1.011011于是有x=(-1)S1.M2e=+(1.011011)23=+1011.011=(11.375)10 2. 将数(20.59375)10转换成754标准的32位浮点数的二进制存储格式。解:首先分别将整数和分数部分转换成二进制数:20.59375=10100.10011 然后移动小数点,使其在第1,2位之间 10100.10011=1.01001001124 e=4于是得到: S=0, E=4+127=131, M=010010011 最后得到32位浮点数的二进
3、制存储格式为:01000001101001001100000000000000=(41A4C000)16 3. 假设由S,E,M三个域组成的一个32位二进制字所表示的非零规格化浮点数,真值表示为(非IEEE754标准):(1)s(1.M)2E128问:它所表示的规格化的最大正数、最小正数、最大负数、最小负数是多少? (1)最大正数0 1111 1111 111 1111 1111 1111 1111 11111(12-23)2127(2)最小正数 000 000 000000 000 000 000 000 000 000 001.02128(3)最小负数111 111 111111 111
4、111 111 111 111 111 111(1223)2127(4)最大负数100 000 000000 000 000 000 000 000 000 001.02128 4.用源码阵列乘法器、补码阵列乘法器分别计算xXy。 (1)x=11000 y=11111 (2) x=-01011 y=11001(1)原码阵列x = 0.11011, y = -0.11111符号位: x0y0 = 01 = 1x原 = 11011, y原 = 111111 1 0 1 1* 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 11 1
5、 0 1 0 0 0 1 0 1 x*y原 = 1, 11 0100 0101带求补器的补码阵列x补 = 0 11011, y补 = 1 00001乘积符号位单独运算0111 1 0 1 1* 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 11 1 0 1 0 0 0 1 0 1尾数部分算前求补输出X11011,y11111XY-0.1101000101(2) 原码阵列x = -0.11111, y = -0.11011符号位: x0y0 = 11 = 0x补 = 11111, y补 = 110111 1 1 1 1*1 1
6、 0 1 11 1 1 1 11 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 1 x*y补 = 0,11010,00101带求补器的补码阵列x补 = 1 00001, y补 = 1 00101乘积符号位单独运算110尾数部分算前求补输出X11111,y110111 1 1 1 1*1 1 0 1 11 1 1 1 11 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 1XY0.1101000101 5. 计算浮点数x+y、x-yx = 2-101*(-0.0101
7、10), y = 2-100*0.010110 x浮= 11011,-0.010110 y浮= 11100,0.010110 Ex-Ey = 11011+00100 = 11111x浮= 11100,1.110101(0)x+y 1 1. 1 1 0 1 0 1 + 0 0. 0 1 0 1 1 00 0. 0 0 1 0 1 1 规格化处理: 0.101100 阶码 11010 x+y= 0.101100*2-6x-y 1 1.1 1 0 1 0 1 + 1 1.1 0 1 0 1 01 1.0 1 1 1 1 1 规格化处理: 1.011111 阶码 11100 x-y=-0.100001
8、*2-4 6. 设过程段 Si所需的时间为i,缓冲寄存器的延时为l,线性流水线的时钟周期定义为maxilml 流水线处理的频率为 f1/。一个具有k 级过程段的流水线处理 n 个任务需要的时钟周期数为Tkk(n1),所需要的时间为: TTk 而同时,顺序完成的时间为:Tnkk级线性流水线的加速比:*Ck = TL nk Tk k(n1)内部存储器*闪存:高性能、低功耗、高可靠性以及移动性编程操作:实际上是写操作。所有存储元的原始状态均处“1”状态,这是因为擦除操作时控制栅不加正电压。编程操作的目的是为存储元的浮空栅补充电子,从而使存储元改写成“0”状态。如果某存储元仍保持“1”状态,则控制栅就
9、不加正电压。如图(a)表示编程操作时存储元写0、写1的情况。实际上编程时只写0,不写1,因为存储元擦除后原始状态全为1。要写0,就是要在控制栅C上加正电压。一旦存储元被编程,存储的数据可保持100年之久而无需外电源。读取操作:控制栅加上正电压。浮空栅上的负电荷量将决定是否可以开启MOS晶体管。如果存储元原存1,可认为浮空栅不带负电,控制栅上的正电压足以开启晶体管。如果存储元原存0,可认为浮空栅带负电,控制栅上的正电压不足以克服浮动栅上的负电量,晶体管不能开启导通。当MOS晶体管开启导通时,电源VD提供从漏极D到源极S的电流。读出电路检测到有电流,表示存储元中存1,若读出电路检测到无电流,表示存
10、储元中存0,如图(b)所示。擦除操作:所有的存储元中浮空栅上的负电荷要全部洩放出去。为此晶体管源极S加上正电压,这与编程操作正好相反,见图(c)所示。源极S上的正电压吸收浮空栅中的电子,从而使全部存储元变成1状态。*cache:设存储器容量为32字,字长64位,模块数m=4,分别用顺序方式和交叉方式进行组织。存储周期T=200ns,数据总线宽度为64位,总线传送周期=50ns。若连续读出4个字,问顺序存储器和交叉存储器的带宽各是多少?解:顺序存储器和交叉存储器连续读出m=4个字的信息总量都是:q=64b4=256b顺序存储器和交叉存储器连续读出4个字所需的时间分别是:t2=mT=4200ns=
11、800ns=810-7st1=T+(m-1)=200ns+350ns=350ns=3510-7s顺序存储器和交叉存储器的带宽分别是:W2=q/t2=256b(810-7)s=320Mb/sW1=q/t1=256b(3510-7)s=730Mb/s*CPU执行一段程序时,cache完成存取的次数为1900次,主存完成存取的次数为100次,已知cache存取周期为50ns,主存存取周期为250ns,求cache/主存系统的效率和平均访问时间。解:h=Nc/(Nc+Nm)=1900/(1900+100)=0.95r=tm/tc=250ns/50ns=5e=1/(r+(1-r)h)=1/(5+(1-5
12、)0.95=83.3%ta=tc/e=50ns/0.833=60ns *存储器:已知某64位机主存采用半导体存储器,其地址码为26位,若使用256K16位的DRAM芯片组成该机所允许的最大主存空间,并选用模块板结构形式,问:(1) 每个模块板为1024K64位,共需几个模块板?(2) 个模块板内共有多少DRAM芯片?(3)主存共需多少DRAM芯片? CPU如何选择各模块板?(1) (2) 每个模块要16个DRAM芯片 (3)64*16 = 1024块由高位地址选模块*用16K8位的DRAM芯片组成64K32位存储器,要求:(1) 画出该存储器的组成逻辑框图。(2) 设存储器读/写周期为0.5S
13、, CPU在1S内至少要访问一次。试问采用哪种刷新方式比较合理?两次刷新的最大时间间隔是多少?对全部存储单元刷新一遍所需的实际刷新时间是多少?解:(1)根据题意,存储总容量为64KB,故地址总线需16位。现使用16K*8位DRAM芯片,共需16片。芯片本身地址线占14位,所以采用位并联与地址串联相结合的方法来组成整个存储器,其组成逻辑图如图所示,其中使用一片2:4译码器。(2)根据已知条件,CPU在1us内至少访存一次,而整个存储器的平均读/写周期为0.5us,如果采用集中刷新,有64us的死时间,肯定不行如果采用分散刷新,则每1us只能访存一次,也不行所以采用异步式刷新方式。假定16K*1位
14、的DRAM芯片用128*128矩阵存储元构成,刷新时只对128行进行异步方式刷新,则刷新间隔为2ms/128 = 15.6us,可取刷新信号周期15us。刷新一遍所用时间15us1281.92ms指令系统*某计算机字长16位,主存容量为64K字,采用单字长单地址指令,共有40条指令,试采用直接、立即、变址、相对四种寻址方式设计指令格式。解:40条指令需占用操作码字段(OP)6位,这样指令余下长度为10位。为了覆盖主存640K字的地址空间,设寻址模式(X)2位,形式地址(D)8位,其指令格式如下:寻址模式定义如下:X= 0 0 直接寻址 有效地址 E=D(直接寻址为256个存储单元)X= 0 1
15、 立即寻址 D字段为操作数X= 1 0 变址寻址 有效地址 E= (RX)D (可寻址64K个存储单元)X= 1 1 相对寻址 有效地址 E=(PC)D (可寻址64K个存储单元)其中RX为变址寄存器(16位),PC为程序计数器(16位),在变址和相对寻址时,位移量D可正可负。四、CPU*微指令:直接表示法特点:这种方法结构简单,并行性强,操作速度快,但是微指令字太长,若微命令的总数为N个,则微指令字的操作控制字段就要有N位。另外,在N个微命令中,有许多是互斥的,不允许并行操作,将它们安排在一条微指令中是毫无意义的,只会使信息的利用率下降。*编码表示法特点:可以避免互斥,使指令字大大缩短,但增
16、加了译码电路,使微程序的执行速度减慢* 编码注意几点:字段编码法中操作控制字段并非是任意的,必须要遵循如下的原则:把互斥性的微命令分在同一段内,兼容性的微命令分在不同段内。这样不仅有助于提高信息的利用率,缩短微指令字长,而且有助于充分利用硬件所具有的并行性,加快执行的速度。应与数据通路结构相适应。每个小段中包含的信息位不能太多,否则将增加译码线路的复杂性和译码时间。一般每个小段还要留出一个状态,表示本字段不发出任何微命令。因此当某字段的长度为三位时,最多只能表示七个互斥的微命令,通常用000表示不操作。*水平型微指令和垂直型微指令的比较(1)水平型微指令并行操作能力强,效率高,灵活性强,垂直型
17、微指令则较差。(2)水平型微指令执行一条指令的时间短,垂直型微指令执行时间长。(3)由水平型微指令解释指令的微程序,有微指令字较长而微程序短的特点。垂直型微指令则相反。(4)水平型微指令用户难以掌握,而垂直型微指令与指令比较相似,相对来说,比较容易掌握。*微地址寄存器有6位(A5-A0),当需要修改其内容时,可通过某一位触发器的强置端S将其置“1”。现有三种情况:(1)执行“取指”微指令后,微程序按IR的OP字段(IR3-IR0)进行16路分支;(2)执行条件转移指令微程序时,按进位标志C的状态进行2路分支;(3)执行控制台指令微程序时,按IR4,IR5的状态进行4路分支。 请按多路转移方法设
18、计微地址转移逻辑。答:按所给设计条件,微程序有三种判别测试,分别为P1,P2,P3。 由于修改A5-A0内容具有很大灵活性,现分配如下:(1)用P1和IR3-IR0修改A3-A0;(2)用P2和C修改A0;(3)用P3和IR5,IR4修改A5,A4。 另外还要考虑时间因素T4(假设CPU周期最后一个节拍脉冲),故转移逻辑表达式如下:A5=P3IR5T4A4=P3IR4T4A3=P1IR3T4A2=P1IR2T4A1=P1IR1T4A0=P1IR0T4+P2CT4 由于从触发器强置端修改,故前5个表达式可用“与非”门实现,最后一个用“与或非”门实现。*某机有8条微指令I1-I8,每条微指令所包含
19、的微命令控制信号如下表所示。 a-j分别对应10种不同性质的微命令信号。假设一条微指令的控制字段为8位,请安排微指 令的控制字段格式。解:经分析,(d, i, j)和(e, f, h)可分别组成两个小组或两个字段,然后进行译码,可得六个微命令信号,剩下的a, b, c, g四个微命令信号可进行直接控制,其整个控制字段组成如下: *流水线(IF Instruction Fetch取指 ID Instruction Decode指令译码 EX Execution执行 WB 结果写回)*今有4级流水线分别完成取值、指令译码并取数、运算、送结果四步操作,今假设完成各步操作的时间依次为100ns,100
20、ns,80ns,50ns。请问:(1)流水线的操作周期应设计为多少?(2)若相邻两条指令发生数据相关,而且在硬件上不采取措施,那么第二条指令要推迟多少时间进行。(3)如果在硬件设计上加以改进,至少需推迟多少时间?解:(1)流水线的操作周期应按各步操作的最大时间来考虑,即流水线时钟周期性 (2)遇到数据相关时,就停顿第2条指令的执行,直到前面指令的结果已经产生,因此至少需要延迟2个时钟周期。 (3)如果在硬件设计上加以改进,如采用专用通路技术,就可使流水线不发生停顿。五、总线总线定义:总线是构成计算机系统的互联机构,是多个系统功能部件之间进行数据传送的公共通路。借助于总线连接,计算机在各系统功能
21、部件之间实现地址、数据和控制信息的交换,并在争用资源的基础上进行工作。 总线分类: 内部总线:CPU内部连接各寄存器及运算器部件之间的总线。 系统总线:CPU和计算机系统中其他高速功能部件相互连接的总线。 I/O总线:CPU和中低速I/O设备相互连接的总线。 总线特性: 物理特性:总线的物理连接方式(根数、插头、插座形状、引脚排列方式等)。 功能特性:每根线的功能。电气特性:每根线上信号的传递方向及有效电平范围。时间特性:规定了每根总线在什么时间有效。总线带宽:总线带宽定义为总线本身所能达到的最高传输速率,它是衡量总线性能的重要指标。cpu 北桥 pci 南桥 isa 之间相互连通通过桥CPU
22、总线、系统总线和高速总线彼此相连。桥实质上是一种具有缓冲、转换、控制功能的逻辑电路。多总线结构体现了高速、中速、低速设备连接到不同的总线上同时进行工作,以提高总线的效率和吞吐量,而且处理器结构的变化不影响高速总线。整个总线分为:数据传送总线:由地址线、数据线、控制线组成。其结构与简单总线相似,但一般是32条地址线,32或64条数据线。为了减少布线,64位数据的低32位数据线常常和地址线采用多路复用方式。仲裁总线:包括总线请求线和总线授权线。中断和同步总线:用于处理带优先级的中断操作,包括中断请求线和中断认可线。公用线:包括时钟信号线、电源线、地线、系统复位线以及加电或断电的时序信号线等。接口的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计算机 组成 原理 重点 整理 白中英版
限制150内