人教版数学九年级下册28.1《锐角三角函数-正弦函数》 教案.doc
《人教版数学九年级下册28.1《锐角三角函数-正弦函数》 教案.doc》由会员分享,可在线阅读,更多相关《人教版数学九年级下册28.1《锐角三角函数-正弦函数》 教案.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 正弦函数 复习引入 教师讲解:杂志上有过这样的一篇报道:始建于1350年的意大利比萨斜塔落成时就已经倾斜1972年比萨发生地震,这座高54.5m的斜塔大幅度摇摆22分之分,仍巍然屹立可是,塔顶中心点偏离垂直中心线的距离已由落成时的2.1m增加至5.2m,而且还以每年倾斜1cm的速度继续增加,随时都有倒塌的危险为此,意大利当局从1990年起对斜塔进行维修纠偏,2001年竣工,使顶中心点偏离垂直中心线的距离比纠偏前减少了43.8cm 根据上面的这段报道中,“塔顶中心点偏离垂直中心线的距离已由落成时的2.1m增加至5.2m,”这句话你是怎样理解的,它能用来描述比萨斜塔的倾斜程度吗? 这个问题涉及到
2、锐角三角函数的知识学过本章之后,你就可以轻松地解答这个问题了! 探究新知 (1)问题的引入 教师讲解:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌现测得斜坡与水平面所成角的度数是30,为使出水口的高度为35m,那么需要准备多长的水管? 教师提出问题:怎样将上述实际问题用数学语言表达,要求学生写在纸上,互相讨论,看谁写得最合理,然后由教师总结教师总结:这个问题可以归纳为,在RtABC中,C=90,A=30,BC=35m,求AB(课本图281-1)根据“在直角三角形中,30角所对的边等于斜边的一半”,即 可得AB=2BC=70m,也就是说
3、,需要准备70m长的水管 教师更换问题的条件后提出新问题:在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?要求学生在解决新问题时寻找解决这两个问题的共同点 教师引导学生得出这样的结论:在上面求AB(所需水管的长度)的过程中,虽然问题条件改变了,但我们所用的定理是一样的:在一个直角三角形中,如果一个锐角等于30,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于也是说,只要山坡的坡度是30这个条件不变,那么斜边与对边的比值不变教师提出第2个问题:既然直角三角形中,30角的斜边与对边的比值不变,那么其他角度的对边与斜边的比值是否也不会变呢?我们再换一个解试一试如课本图28
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 锐角三角函数-正弦函数 人教版数学九年级下册28.1锐角三角函数-正弦函数 教案 人教版 数学 九年级 下册 28.1 锐角 三角函数 正弦 函数
限制150内