空间几何体的表面积和体积经典例题(学生讲义).doc





《空间几何体的表面积和体积经典例题(学生讲义).doc》由会员分享,可在线阅读,更多相关《空间几何体的表面积和体积经典例题(学生讲义).doc(55页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date空间几何体的表面积和体积经典例题(学生讲义)空间几何体的表面积和体积空间几何体的表面积和体积一课标要求:了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。二命题走向近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与
2、旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。由于本讲公式多反映在考题上,预测2016年高考有以下特色:(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三要点精讲1多面体的面积和体积公式名称侧面积(S侧)全面积(S全)体 积(V)棱柱棱柱直截面周长lS侧+2S底S底h=S直截面h直棱柱chS底h棱锥棱锥各侧面积之和S侧+S底S底h正棱锥ch棱台棱
3、台各侧面面积之和S侧+S上底+S下底h(S上底+S下底+)正棱台 (c+c)h表中S表示面积,c、c分别表示上、下底面周长,h表斜高,h表示斜高,l表示侧棱长。2旋转体的面积和体积公式名称圆柱圆锥圆台球S侧2rlrl(r1+r2)lS全2r(l+r)r(l+r)(r1+r2)l+(r21+r22)4R2Vr2h(即r2l)r2hh(r21+r1r2+r22)R3表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台 上、下底面半径,R表示半径。四典例解析题型1:柱体的体积和表面积例1一个长方体全面积是20cm2,所有棱长的和是24cm,求长方体的对角线长.例2如图1
4、所示,在平行六面体ABCDA1B1C1D1中,已知AB=5,AD=4,AA1=3,ABAD,A1AB=A1AD=。(1)求证:顶点A1在底面ABCD上的射影O在BAD的平分线上;(2)求这个平行六面体的体积。图1 图2题型2:柱体的表面积、体积综合问题例3一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是( )A2 B3 C6 D例4如图,三棱柱ABCA1B1C1中,若E、F分别为AB、AC 的中点,平面EB1C1将三棱柱分成体积为V1、V2的两部分,那么V1V2= _ _。PABCDOE题型3:锥体的体积和表面积(2015湖北卷3)用与球心距离为的平面去截球,所得的截面面积为,则
5、球的体积为A. B. C. D. 例6(2015北京,19)(本小题满分12分)ABCMPD如图,在四棱锥中,平面平面,是等边三角形,已知,()设是上的一点,证明:平面平面;()求四棱锥的体积ABCMPDO题型4:锥体体积、表面积综合问题例7ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于正方形ABCD所在的平面,且GC2,求点B到平面EFG的距离?例8(2015江西理,12)如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥ABEFD与三棱锥AEFC的表面积分别是
6、S1,S2,则必有( )AS1S2CS1=S2 DS1,S2的大小关系不能确定题型5:棱台的体积、面积及其综合问题例9(2015四川理,19)(本小题满分12分)如图,面ABEF面ABCD,四边形ABEF与四边形ABCD都是直角梯形,BAD=FAB=90,BCAD,BEAF,G、H分别是FA、FD的中点。()证明:四边形BCHG是平行四边形;()C、D、E、F四点是否共面?为什么?()设AB=BE,证明:平面ADE平面CDE.GHFEDCBA 例10(1)(2015四川理,8)设是球心的半径上的两点,且,分别过作垂线于的面截球得三个圆,则这三个圆的面积之比为:( )()()()()例11(20
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 几何体 表面积 体积 经典 例题 学生 讲义

限制150内