高考排列组合典型例题.doc
《高考排列组合典型例题.doc》由会员分享,可在线阅读,更多相关《高考排列组合典型例题.doc(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高考排列组合典型例题典型例题一排列组合典型例题例1 用0到9这10 个数字可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:没有重复数字;数字“0”不能排在千位数上;个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是2、4、6、8的四位偶数(这是因为零不能放在千位数上)
2、由此解法一与二 如果从千位数入手四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有(个) 没有重复数字的四位偶数有 个 解法2:当个位数上排“0”时,同解一有个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的
3、排列数中减去千位数是“0”排列数得:个 没有重复数字的四位偶数有 个 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 个干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有个 没有重复数字的四位偶数有 个 解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数 没有重复数字的四位数有个其中四位奇数有个 没有重复数字的四位偶数有个说明:这是典型的简单具有限制条件的排列问题,上述四种解法是基本、常见的解法、要认真体会每种解
4、法的实质,掌握其解答方法,以期灵活运用典型例题二例2 三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法?解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有种不同排法对于其中的每一种排法,三个女生之间又都有对种不同的排法,因此共有种不同的排法 (2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档这样共有4个空档,
5、加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻由于五个男生排成一排有种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有种方法,因此共有种不同的排法 (3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有种不同的排法,对于其中的任意一种排法,其余六位都有种排法,所以共有种不同的排法 解法2:(间接法)3个女生和5个男生排成一排共有种不同的排法,从中扣除女生排在首位的种排法和女生排在末位的种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣
6、去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有种不同的排法,所以共有种不同的排法解法3:(元素分析法)从中间6个位置中挑选出3个来让3个女生排入,有种不同的排法,对于其中的任意一种排活,其余5个位置又都有种不同的排法,所以共有种不同的排法,(4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有种不同的排法;如果首位排女生,有种排法,这时末位就只能排男生,有种排法,首末两端任意排定一种情况后,其余6位都有种不同的排法,这样可有种不同排法因此共有种不同的排法解法2:3个女生和5个男生排成一排有种排法,从中扣去两端都是
7、女生排法种,就能得到两端不都是女生的排法种数因此共有种不同的排法 说明:解决排列、组合(下面将学到,由于规律相同,顺便提及,以下遇到也同样处理)应用问题最常用也是最基本的方法是位置分析法和元素分析法若以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件若以元素为主,需先满足特殊元素要求再处理其它的元素 间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快 捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用典型例题三例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻
8、的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 解:(1)先排歌唱节目有种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有中方法,所以任两个舞蹈节目不相邻排法有:43200. (2)先排舞蹈节目有中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。所以歌唱节目与舞蹈节目间隔排列的排法有:2880种方法。 说明:对于“间隔”排列问题,我们往往先排个数较少的元素,再让其余元素插空排列。否则,若先排个数较多的元素,再让其余元素插空排时,往往个数较多的元素有相邻情况。如本题(2)中,若先排歌唱节目有,再排舞蹈节目有,这样排完之后,其中含有歌唱节目相邻
9、的情况,不符合间隔排列的要求。典型例题四例4 某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法分析与解法1:6六门课总的排法是,其中不符合要求的可分为:体育排在第一书有种排法,如图中;数学排在最后一节有种排法,如图中;但这两种排法,都包括体育排在第一书数学排在最后一节,如图中,这种情况有种排法,因此符合条件的排法应是: (种) 分析与解法2:根据要求,课程表安排可分为4种情况: (1)体育、数学既不排在第一节也不排在最后一节,这种排法有种; (2)数学排在第一节但体育不排在最后一节,有排法种; (3)体育排
10、在最后一节但数学不排在第一节,有排法种; (4)数学排在第一节,体育排在最后一节,有排法 这四类排法并列,不重复也不遗漏,故总的排法有: (种) 分析与解法3:根据要求,课表安排还可分下述4种情况: (1)体育,数学既不在最后也不在开头一节,有种排法; (2)数学排在第一节,体育不排在最后一节,有4种排法; (3)体育在最后一书,数学木在第一节有4种排法; (4)数学在第一节,体育在最后一节有1种排法 上述 21种排法确定以后,仅剩余下四门课程排法是种,故总排法数为(种) 下面再提出一个问题,请予解答 问题:有6个人排队,甲不在排头,乙不在排尾,问并肩多少种不同的排法 请读者完成此题 说明:解
11、答排列、组合问题要注意一题多解的练习,不仅能提高解题能力,而且是检验所解答问题正确与否的行之有效的方法典型例题五例5现有辆公交车、位司机和位售票员,每辆车上需配位司机和位售票员问车辆、司机、售票员搭配方案一共有多少种?分析:可以把辆车看成排了顺序的三个空:,然后把名司机和名售票员分别填入因此可认为事件分两步完成,每一步都是一个排列问题解:分两步完成第一步,把名司机安排到辆车中,有种安排方法;第二步把名售票员安排到辆车中,有种安排方法故搭配方案共有种说明:许多复杂的排列问题,不可能一步就能完成而应分解开来考虑:即经适当地分类成分或分步之后,应用分类计数原理、分步计数原理原理去解决在分类或分步时,
12、要尽量把整个事件的安排过程考虑清楚,防止分类或分步的混乱典型例题六例6下是表是高考第一批录取的一份志愿表如果有所重点院校,每所院校有个专业是你较为满意的选择若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?分析:填写学校时是有顺序的,因为这涉及到第一志愿、第二志愿、第三志愿的问题;同一学校的两个专业也有顺序,要区分出第一专业和第二专业因此这是一个排列问题解:填表过程可分两步第一步,确定填报学校及其顺序,则在所学校中选出所并加排列,共有种不同的排法;第二步,从每所院校的个专业中选出个专业并确定其顺序,其中又包含三小步,因此总的排列数有种综合以上两步,由分步计
13、数原理得不同的填表方法有:种说明:要完成的事件与元素的排列顺序是否有关,有时题中并未直接点明,需要根据实际情景自己判断,特别是学习了后面的“组合”之后这一点尤其重要“选而且排”(元素之间有顺序要求)的是排列,“选而不排”(元素之间无顺序要求)的是组合另外,较复杂的事件应分解开考虑典型例题七例5名同学排队照相(1)若分成两排照,前排人,后排人,有多少种不同的排法?(2)若排成两排照,前排人,后排人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?(4)若排成一排照,人中有名男生,名女生,女生不能相邻,有多少种不面的排法?分析:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 排列组合 典型 例题
限制150内