《第九章-不等式与不等式组教案.doc》由会员分享,可在线阅读,更多相关《第九章-不等式与不等式组教案.doc(71页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date第九章-不等式与不等式组教案9第九章 不等式与不等式组教材内容本章的主要内容包括:不等式,一元一次不等式、一元一次不等式组,利用一元一次不等式分析、解决实际问题。教材以实际问题为例引出不等式及其解集的概念,然后类比一元一次方程,引出一元一次不等式的概念。为进一步讨论不等式的解法,接着讨论了不等式的性质,并运用它们解简单的不等式。在此基础上,教材从一个选择购物商店问题入
2、手,对列、解一元一次不等式作了进一步的讨论,并归纳一元一次不等式与一元一次方程的异同及应注意的问题。最后,结合三角形三条边的大小关系,引进了一元一次不等式组及其解集,并讨论了一元一次不等式组的解法。教学目标知识与技能1、了解一元一次不等式(组)及其相关概念;2、理解不等式的性质;3、掌握一元一次不等式(组)的解法并会在数轴上表示解集;4、学会应用一元一次不等式(组)解决有关的实际问题。过程与方法1、通过观察、对比和归纳,探索不等式的性质,在利用它解一元一次不等式(组)的过程中,体会其中蕴涵的化归思想;2、经历“把实际问题抽象为一元一次不等式”的过程,体会一元一次不等式(组)是刻画现实世界中不等
3、关糸的一种有效的数学模型.情感、态度与价值观1、通过类比一元一次方程的解法从而更好地去掌握一元一次不等式的解法,树立辩证唯物主义的思想方法;2、在利用一元一次不等式(组)解决问题的过程中,感受数学的应用价值,提高分析问题、解决问题的能力。重点难点 一元一次不等式(组)的解法及应用是重点;一元一次不等式(组)的解集和应用一元一次不等式(组)解决实际问题是难点。课时安排本章教学时间约为7课时,具体分配如下:9.1 不等式3课时9.2 一元一次不等式2课时9.3一元一次不等式组1课时复习与小结1课时9.1不等式(第1课时)9.1.1不等式及其解集教学目标1、了解不等式的概念;2、理解不等式的解和解集
4、,能正确用数轴表示不等式的解集。3、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;4、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。重点难点重点:不等式,不等式的解、解集的概念;难点:不等式解集的理解与数轴表示。教学过程 一、情景导入一辆匀速行驶的汽车在11:20时距离A地50千米,要在12:00以前驶过A地,车速应该具备什么条件?题目中有等量关系吗?没有。那是什么关系呢?从时间上看,汽车要在12:00之前驶过A地,则
5、以这个速度行驶50千米所用的时间不到2/3小时,即汽车驶过A地的时间小于2/3小时。从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即汽车2/3小时走的路程大于50千米。这些是不等关系。二、不等式的概念若设车速为每小时x千米,你能用一个式子表示上面的关系吗?50/x2/3 或2/3x5 像这样用“”或“”、“”、“ 50成立: 76,73,79,80,74. 9,75.1,90,60.其中76, 79,80, 75.1,90能使不等式2/3x 50成立。我们把能使不等式成立的未知数的值,叫不等式的解.我们看到不等式的解不是一个,你还能找出这个不等式的
6、其他解吗?它的解到底有多少个? 如77、81、101等等,所有大于75的数都是这个不等式的解,它的解有无数个。一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。如所有大于75的数组成不等式2/3x 50的解集,写作x 7 5,这个解集可以用数轴来表示。o75求不等式的解集的过程叫做解不等式四、例题例: 在数轴上表示下列不等式的解集:(1)x-1;(2)x-1;(3)x”、 “3 , 5+2 3+2, 5-2 3-2;(2)-12, 65 25, 6(-5) 2(-5);(4)-2”, “b,则2a 2b;(2)若-2y10,则y -5;(3)若a0,则ac-1 bc-1;(4)若
7、ab,c”或“,(2),(4)。四、课堂练习1、判断正误:(1)a b ab bb(2)a b a/3b/3(3)a b 2a 0 a 02、根据下列已知条件,说出a与b的不等关系,并说明依据不等式哪一条性质。(1)a3 b3 (2)a/3b/3(3)4a 4b (4)1-1/2a1-1/2b3、填空(1) 2a 3a a是 数(2)a/3a/2 a是 数(3)ax 1 a是 数五、课堂小结:不等式的性质六、作业:必做题:课本120页 习题9.1第4、5题;选做题:课本120页 习题9.1第6题。板书设计不等式的性质不等式性质1 例题 小结不等式性质2 作业不等式性质3 练习教学反思: 9.1
8、不等式(第3课时)9.1.2 不等式的性质(二)教学目标1、掌握不等式的解法,并能在数轴上表示其解集。2、通过经历由具体实例建立不等模型的过程,了解不等式的解法;渗透类比思想来解不等式,培养学生观察、分析和归纳的能力。3、在积极参与数学活动的过程中,培养学生大胆猜想、勇于发言与合作交流的意识和实事求是的态度以及独立思考的习惯。重点难点重点:不等式的解法;难点:不等式性质3在解不等式中的运用。教学过程一、复习导入不等式的性质有哪些?不等式的性质与等式的性质有什么不同?和利用等式的性质可以解方程一样,利用不等式的性质可以解不等式。二、不等式的解法例1 解下列不等式,并在数轴上表示解集:(1) x7
9、26 (2)3x 2x1(3)2/3x 50 (4)-4x3分析:解不等式最终要变成什么形式呢?就是要使不等式逐步化为xa或x a的形式。解:(1) x726根据等式的性质1,得x7+726+7 x33 33O(2)3x 2x1 根据等式的性质1,得3x-2x 2x1-2x x26 3x50 -4x3它们有哪些共同特征?二、一元一次不等式的概念类似于一元一次方程,只含有一个未知数,并且未知数的次数是1的不等式,叫做一元一次不等式一般的,利用不等式的性质,采取与解一元一次不等式方程类似的步骤,就可以求出一元一次不等式的解法。三、例题例1 解下列不等式,并在数周上表示解集(1) 2(1+x)3 (
10、2)解:(1)去括号,得 2+2x3移项,得 2x3-2合并同类项,得 2x1系数化为1,得 x这个不等式的解集在数轴上表示为1/2O (2)去分母,得 3(2+x)2(2x-1)去括号,得 6+3x4x-2移项,得 3x-4x-2-6合并同类项,得 -x-8系数化为1,得 x8这个不等式的解集在数轴上表示为归纳:解一元一次方程,要根据等式的性质,讲方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。四、课堂练习课本P124页 练习1、2 五、课堂小结1、一元一次不等式的概念2、一元一次不等式的解法六、作业:必做题:课本126页第1、2题;选做题:课
11、本126页第3题。板书设计 一元一次不等式(第1课时)一元一次不等式的概念 例1 小结一元一次不等式的解法 练习 作业教学反思: 9.2 一元一次不等式(第2课时)教学目标1、学会从实际问题中抽象出不等式模型,会用一元一次不等式解决实际问题。2、通过观察、实践、讨论等活动,经历从实际问题中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想。3、让学生积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值。养成独立思考的习惯。重点难点重点:用一元一次不等式解决实际问题;难点:寻找实际问题的不等关系。教学过程一、导入新课我们知道,在生产和生活中存在大量的等量关
12、系,与此同时,我们也看到在生产和生活中存在着大量的不等关系,解决这些问题,用不等式比较方便。二、例题例2 2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%,如果到2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?分析:2002年北京空气质量良好的天数是多少?用x表示2008年增加的空气质量良好的天数,则2008年北京空气质量良好的天数是多少?本题的不等关系是什么?2002年北京空气质量良好的天数是36555%;2008年北京空气质量良好的天数是x+36555%;不等关系是:2008年北京空气质量良好的天数366 70%.解:设20
13、08年北京空气质量良好的天数比2002年增加x天,依题意,得(x+36555%)/366 70%去分母,得x+200.5 256.2移项,合并同类项,得 x55.45思考:这是本题的答案吗?为什么?本题的答案是什么?不是。因为x为正整数。x56答:2008年北京空气质量良好的天数至少比2002年增加56天。注意:用不等式解应用问题时,要考虑问题的实际意义。例2中的未知数都应是正整数。例3 甲、乙两个商场以同样的价格出售同样的商品,同时又各自推出不同的优惠措施甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90收费;乙商场则是:累计购买50元商品后,再买的商品按原价的95收费顾客选
14、择哪个商店购物能获得更多的优惠?分析:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑你认为应分哪几种情况考虑?分三种情况考虑:累计购物不超过50元;累计购物超过50元但不超过100元;累计购物超过100元。(1)如果累计购物不超过50元,则在两店购物花费有区别吗?为什么?没有区别。因为两家商店都没有优惠。(2)如果累计购物超过50元但不超过100元,则在哪家商店购物花费小?为什么?在乙商店购物花费小。因为乙商店有优惠,而甲商店没有优惠。(3)如果累计购物超过100元,那么在哪家商店购物花费小?因为两家商店都有优惠,所以要分三种情况考虑:
15、设累计购物x元(x100),则在甲商店购物花费多少元?在乙商店购物花费多少元?在甲商店购物花费:100+0.9(x-100)元;在乙商店购物花费:50+0.95(x-50)。 若在甲商场购物花费小,则50+0.95(x-50)100+0.9(x-100)解之,得 x150 若在乙商场购物花费小,则50+0.95(x-50)100+0.9(x-100)解之,得 x150若在两家商场购物花费相同。50+0.95(x-50)=100+0.9(x-100)解之,得 x=150答:如果累计购物不超过50元,则在两店购物花费一样多。如果累计购物超过50元但不超过100元,则在乙商店购物花费小。若累计购物多
16、于150元,在甲商场购物花费小;若累计购物等于150元,在两商场购物花费一样多;若累计购物多于100元少于150元,在乙商场购物花费小。注意:问题比较复杂时,要考虑分类解答。分类要做到不重不漏。三、课堂练习课本125页练习1、2。四、课堂小结用一元一次不等式解决实际问题与用一元一次方程解决实际问题一样,要将实际问题通过列一元一次不等式转化为数学问题,然后通过解决数学问题来解决实际问题。五、作业:必做题:课本126页第5、6题;选做题:课本126页第7、8题。板书设计实际问题与一元一次不等式例2 例3 小结 练习 作业 教学反思: 9.3 一元一次不等式组教学目标1、了解一元一次不等式组的概念,
17、理解一元一次不等式组解集的意义;掌握一元一次不等式组的解法。2、通过由一元一次不等式、一元一次不等式的解集、解不等式的概念来类推学习一元一次不等组、一元一次不等组的解集、解不等式组的概念,培养学生的类比推理能力。3、通过培养学生的动手能力,发展学生的感性认识与理性认识,培养学生独立思考的习惯。重点难点重点:一元一次不等式组的解法和解法;难点:一元一次不等式组的解集的表示和理解。教学过程一、情景导入问题 用每分可抽30t的抽水机来抽污水管里积存的污水,估计积存的污水超过1200t而不足1500t,那么污水抽完所用的时间范围是什么?设用x min将污水抽完,则x同时满足不等式30x1200 30x
18、1500 二、一元一次不等式组的概念和解集类似与方程组,把这两个一元一次不等式合起来,组成一个一元一次不等式组。记作:类比方程组的解,我们把几个不等式组的解集的公共部分,叫做不等式组的解集。解不等式就是求它的解集。我们可以利用数轴确定不等式组的解集。(1) 24 x4(2) 24 2x4(3) 24 无 解(4) 24 x4上面的表示可以用口诀来概括:大大取大,小小取小,大小小大中间找,大大小小不用找。前面不等式组的解集是7x13。注意:如果不等号中带有等号,空心圆就要变成实心圆。三、解不等式组例1 解下列不等式组:(1) (2)分析:你认为解不等式组应该分哪些步骤? 求出各个不等式的解集;
19、找出各个不等式的解集的公共部分(利用数轴)即解集解:(1)由(1)得x2 由(2)得x3 x3(2)由(1)得x8 由(2)得2x+5-36-3x x4/5原不等式无解。四、课堂练习 课本140练习1。五、课堂小结1、一元一次不等式组的概念和解集。2、不等式解集的表示。3、解不等式组。作业:课本141面1、2。板书设计一元一次不等式组一元一次不等式组 例题 小结一元一次不等式组的解集 大大取大,小小取小, 作业大小小大中间找,大大小小不用找。 练习教学反思: 第九章 不等式与不等式组单元小结复习目标 1、能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。2、会解简单的一元一
20、次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。3、能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题。重点难点重点:能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题。难点:分析并找出实际问题中的不等关系。复习过程一、知识结构 实际问题不等式不等式的性质一元一次不等式一元一次不等式组解不等式实际的答案 二、回顾与思考1、什么是不等式?什么是一元一次不等式?什么是一元一次不等式组? 2、不等式的基本性质有哪些?一元一次不等式的解法与一元一次方程的解法有什么异同?什么是一元一次不
21、等式的解集?3、什么是一元一次不等式组的解集?怎样解一元一次不等式组?4、运用不等式解决实际问题与运用一元一次方程解决实际问题有什么异同?三、例题导引例1 若ab,请你指出下列不等式组的解集: 大大取大,小小取小;大小小大取中间;大大小小取不了。例2 若不等式组无解,求a的取值范围. 例3 已知方程组的解是正数,求m的取值范围。 例4 某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆,经了解甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李。(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案; (2)如果甲
22、、乙两种汽车每辆的租车费用分别为2000元,1800元,请你选择最省钱的一种方案。三、练习巩固夯实基础1、在数轴上表示不等式组 的解,其中正确的是( ) 2、不等式的解集是 .3、不等式组的整数解是( ) A、-1,0 B、-1,1 C、0,1 D、无解4、班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔 支。5、解下列不等式:(1) (2)36若点M(2m+1,3-m)在第三象限,则m的取值范围是 。7、某校在一次参观活动中,把学生编为8个组,若每组比预定人数多1人,则参观人数超过200人,若每组比预定人数少2人,则参观
23、人数不大于184人,试求预定每组学生的人数能力提高7、已知一个等腰三角形的底边长5,腰长为x,则x的取值范围是 .8、不等式组的最小整数解是( )A、0 B、1 C、2 D、19、解下列不等式:(1) (2) 10、已知不等式组的解集是1x1,求(a+1)(b-1)的值。11、一个长方形的周长为60,长不小于宽,那么它的长的取值范围是什么?12、某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元,该商店有两种优惠办法:(1)买一只茶壶送一只茶杯;(2)按总价的92%付款.现有一顾客需购买4只茶壶,茶杯若干只(不少于4只).请问:顾客买同样多的茶杯时,用哪一种优惠办法购买省钱?13、乘某城市的一种出租汽车起价是10元(即行驶路程在5km以内都需付10元车费),达成或超过5km后,每增加1km,加价1.2元(不足1km部分按1km计).现在某人乘这种出租汽车从甲地到乙地,支付车费17.2元,从甲地到乙地的路程大约是多少?14、若方程组的解满足x1且y1,求k的整数解。作业:1、若不等式组的解集是1x3,求ax+b0解。2、小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则
限制150内