第2章随机过程习题和答案解析.doc
《第2章随机过程习题和答案解析.doc》由会员分享,可在线阅读,更多相关《第2章随机过程习题和答案解析.doc(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date第2章随机过程习题和答案解析第2章随机过程习题和答案解析第二章 随机过程分析1.1 学习指导1.1.1 要点随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。1. 随机过程的概念随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集
2、合,随机过程是随机变量概念的延伸。2. 随机过程的分布函数和概率密度函数如果(t)是一个随机过程,则其在时刻t1取值(t1)是一个随机变量。(t1)小于或等于某一数值x1的概率为P (t1) x1 ,随机过程(t)的一维分布函数为F1(x1, t1) = P(t1) x1 (2-1)如果F1(x1, t1)的偏导数存在,则(t)的一维概率密度函数为对于任意时刻t1和t2,把(t1) x1和(t2) x2同时成立的概率 称为随机过程x (t)的二维分布函数。如果存在,则称f2(x1, x2; t1, t2)为随机过程x (t)的二维概率密度函数。对于任意时刻t1,t2,tn,把称为随机过程x (
3、t)的n维分布函数。如果存在,则称fn(x1, x2, , xn; t1, t2, , tn)为随机过程x (t)的n维概率密度函数。3. 随机过程的数字特征随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。随机过程x (t)在任意给定时刻t的取值x (t)是一个随机变量,其均值为其中,f 1(x, t)为x (t)的概率密度函数。随机过程x (t)的均值是时间的确定函数,记作a(t),它表示随机过程x (t)的n个样本函数曲线的摆动中心。随机过程x (t)的方差的定义如下:随机过程x (t)的方差常记作2(t)。随机过程x (t)的方差的另一个常用的公式为也就是说,方
4、差等于均方值与均值平方之差,它表示随机过程在时刻t,对于均值a(t)的偏离程度。随机过程x (t)的相关函数的定义如下:式中, x (t1)和x (t2)分别是在t1和t2时刻观测得到的随机变量。R(t1, t2)是两个变量t1和t2的确定函数。随机过程x (t)的相关函数表示在任意两个时刻上获得的随机变量之间的关联程度。随机过程x (t)的协方差函数的定义如下:式中,a(t1)、a(t2)分别是在t1和t2时刻得到的x (t)的均值;f2 (x1, x2; t1, t2)是x (t)的二维概率密度函数。B(t1, t2) 与R(t1, t2)之间有如下关系式:若a(t1) = a(t2)=0
5、,则B(t1, t2) = R(t1, t2)。随机过程x (t)和(t)的互相关函数的定义如下:4. 平稳过程及其性质平稳过程包括严平稳过程(强平稳过程或狭义平稳过程)和广义平稳过程。如果随机过程x(t)的任意有限维分布函数与时间起点无关,也就是说,对于任意的正整数n和所有实数D,有则称该随机过程是严格意义下的平稳随机过程,简称严平稳随机过程。严平稳随机过程的一维分布函数和均值都与时间无关,二维分布函数和自相关函数都只与时间间隔有关。把对严平稳随机过程的要求降低到仅仅均值与时间无关和自相关函数只与时间间隔有关的随机过程定义为广义平稳随机过程。严平稳随机过程必定是广义平稳的,反之不一定成立。平
6、稳随机过程具有各态历经性(遍历性)。因此,在求解各种统计平均时,无需无限多次的样本,只要获得一次考察,用一次实现的“时间平均”值代替平稳随机过程的“统计平均”值即可,从而使测量和计算大为简化。平稳过程x(t)的功率谱密度与其自相关函数是一付立叶变换对。据此,可以得到两条结论:平稳过程x(t)的功率等于其自相关函数在零点的取值R(0);各态历经过程任一样本函数的功率谱密度等于平稳过程的功率谱密度。5. 高斯过程高斯过程又被称为正态随机过程。如果随机过程x(t)的任意n维(n =1, 2, .)分布均服从正态分布,则称它为正态过程或高斯过程,其n维正态概率密度函数表示式为其中,数学期望ak = E
7、(tk);方差2k = E(tk) - ak2;归一化协方差矩阵行列式如果高斯过程在不同时刻不相关,则它们也是统计独立的。高斯过程经过线性系统后,其系统输出也是高斯过程。6. 窄带随机过程如果随机过程x(t)的谱密度集中在中心频率fc附近相对窄的频带范围Df 内,即满足Df fc的条件,且 fc 远离零频率,则称其为窄带随机过程。随机过程x(t)可以表示为其中,ax(t)为随机包络;jx(t)为随机相位;wc为中心角频率。显然,ax(t)和jx(t)的变化相对于载波产生的相移(wct)的变化要缓慢得多。将窄带随机过程表示式展开为其中,c(t) = a(t)cos(t);s(t) = a(t)s
8、in(t)。xc(t)和xs(t)分别被称为同相分量和正交分量。窄带随机过程x(t)的统计特性可以由ax(t)和jx(t)或xc(t)和xs(t)的统计特性确定。若x(t)的统计特性已知,则ax (t)和jx (t)或xc(t)和xs(t)的统计特性也随之确定。由于x(t)平稳且均值为零,故对于任意的时间t,都有Ex(t) = 0 ,所以若窄带过程x(t)是平稳的,则xc(t)和xs(t)也是平稳的。平稳窄带随机过程x(t)的自相关函数可以表示为一个均值为零的窄带平稳高斯过程x(t),它的同相分量xc(t)和正交分量xs(t)同样是平稳高斯过程,而且均值为零,方差也相同。此外,在同一时刻上得到
9、的xc(t)与xs(t)是统计独立的。ax服从瑞利(Rayleigh)分布,jx服从均匀分布。7. 高斯白噪声和带限白噪声电子系统中常见的热噪声近似为白噪声,白噪声的幅值服从高斯分布。因此,在通信系统中,常用高斯白噪声作为信道中的噪声模型。白噪声通过一个有限带宽的信道或滤波器后,输出噪声的带宽就是有限的,如果其频谱在信道或滤波器的通带内仍具有白色特性,则称其为带限白噪声。白噪声n(t)的功率谱密度在所有频率上均为常数,即或者其中,n0为正常数。式(2 20)是白噪声n(t)的双边功率谱密度,式(2 21)是其单边功率谱密度。白噪声n(t)的自相关函数为上式表明,白噪声仅在 = 0时才相关,而在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 随机 过程 习题 答案 解析
限制150内