数列的五种求和公式.doc
《数列的五种求和公式.doc》由会员分享,可在线阅读,更多相关《数列的五种求和公式.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除数列求和的几种常见方法数列问题中蕴涵着丰富的数学思想方法,是高考用来考查考生对数学思想方法理解程度的良好素材,是历年高考的一大热点,在高考命题中,多以与不等式的证明或求解相结合的形式出现,一般数列的求和,主要是将其转化为等差数列或等比数列的求和问题,因此,我们有必要对数列求和的各种方法进行系统探讨.1、公式求和法通过分析判断并证明一个数列是等差数列或等比数列后,可直接利用等差、等比数列的求和公式求和,或者利用前个正整数和的计算公式等直接求和.运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算.特别地,注意数列是等
2、比数列时需要讨论和的情况.等差数列求和公式: 等比数列求和公式:另外,还有必要熟练掌握一些常见的数列的前项和公式.正整数和公式有:;例1、已知数列的前项和为,且若,求数列的前项和分析:根据数列的项和前项和的关系入手求出再根据()求出数列的通项公式后,确定数列的特点,根据公式解决.解:当时,当时,适合上式,即数列是首项为4、公比为2的等比数列.【能力提升】公式法主要适用于等差、等比数列或可转化为等差、等比数列的数列的求和,一些综合性的数列求和的解答题最后往往就归结为一个等差数列或等比数列的求和问题.变式训练1: 已知,求的前项和.变式训练2: 设,求的最大值.2、倒序相加法如果一个数列,与首末两
3、端等“距离”的两项的和相等或等于同一个常数,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法.我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前项和公式的推导,用的就是“倒序相加法”. 则例2、已知函数求分析:由所求的和式的特点,易想到探究:和为1的两个自变量函数值的和是否为常数.从而确定可否用倒序相加法求和.【解析】设+ 得 ,所以【能力提升】倒序相加法来源于课本,是等差数列前项和公司推导时所运用的方法,它是一种重要的求和方法.当求一个数列的有限项和时,若是“与首末两端等距离”的两项和都相等,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 求和 公式
限制150内