线面垂直、面面垂直知识点总结、经典例题及解析、高考题练习及答案(第4次补课).doc
《线面垂直、面面垂直知识点总结、经典例题及解析、高考题练习及答案(第4次补课).doc》由会员分享,可在线阅读,更多相关《线面垂直、面面垂直知识点总结、经典例题及解析、高考题练习及答案(第4次补课).doc(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date线面垂直、面面垂直知识点总结、经典例题及解析、高考题练习及答案(第4次补课)线面垂直、面面垂直知识点总结、经典例题及解析、高考题练习及答案(第4次补课) 直线、平面垂直的判定与性质【知识梳理】一、直线与平面垂直的判定与性质1、 直线与平面垂直(1)定义:如果直线与平面内的任意一条直线都垂直,我们就说直线与平面互相垂直,记作,直线叫做平面的垂线,平面叫做直线的垂面。如图
2、,直线与平面垂直时,它们唯一公共点P叫做垂足。(2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。结论:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,记作.(3)性质定理:垂直于同一个平面的两条直线平行。即.由定义知:直线垂直于平面内的任意直线。2、 直线与平面所成的角平面的一条斜线和它在平面上的射影所成的锐角或者直角叫做这条直线和这个平面所成的角。一条直线垂直于平面,该直线与平面所成的角是直角;一条直线和平面平行,或在平面内,则此直线与平面所成的角是的角。3、 二面角的平面角从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角
3、的棱,这两个半平面叫做二面角的面。如果记棱为,那么两个面分别为的二面角记作.在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则两射线所构成的角叫做叫做二面角的平面角。其作用是衡量二面角的大小;范围:. 二、平面与平面垂直的判定与性质1、定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直.2、判定:一个平面过另一个平面的垂线,则这两个平面垂直。简述为“线面垂直,则面面垂直”,记作.3、性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直,记作.【经典例题】【例1】(2012浙江文)设是直线,a,是两个不同的平面()A若a,则aB若
4、a,则a C若a,a,则D若a, a,则【答案】B 【解析】利用排除法可得选项B是正确的,a,则a.如选项A:a,时, a或a;选项C:若a,a,或;选项D:若若a, a,或. 【例2】(2012四川文)下列命题正确的是()A若两条直线和同一个平面所成的角相等,则这两条直线平行B若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D若两个平面都垂直于第三个平面,则这两个平面平行【答案】C 【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个
5、平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确. 【例3】(2012山东)已知直线m、n及平面,其中mn,那么在平面内到两条直线m、n距离相等的点的集合可能是:一条直线;一个平面;一个点;空集其中正确的是 ()A BC D【答案】C【解析】如图1,当直线m或直线n在平面内时有可能没有符合题意的点;如图2,直线m、n到已知平面的距离相等且所在平面与已知平面垂直,则已知平面为符合题意的点;如图3,直线m、n所在平面与已知平面平行,则符合题意的点为一条直线,从而选C. 【例4】(2012四川理)如图,在正方体中,、分别是、的中点,则
6、异面直线与所成的角的大小是_.【答案】90 【解析】方法一:连接D1M,易得DNA1D1 ,DND1M, 所以,DN平面A1MD1, 又A1M平面A1MD1,所以,DNA1D1,故夹角为90 方法二:以D为原点,分别以DA, DC, DD1为x, y, z轴,建立空间直角坐标系Dxyz.设正方体边长为2,则D(0,0,0),N(0,2,1),M(0,1,0)A1(2,0,2) 故, 所以,cos = 0,故DND1M,所以夹角为90 【例5】(2012大纲理)三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为_.【答案】 【解析】设该三棱柱的边长为1,依题意有,则 而 【例6】(2
7、011福建)如图,正方体ABCDA1B1C1D1中,AB2,点E为AD的中点,点F在CD上,若EF平面AB1C,则线段EF的长度等于_ 【答案】【解析】EF面AB1C,EFAC.又E是AD的中点,F是DC的中点EFAC. 【例7】(2012年山东文)如图,几何体是四棱锥,为正三角形,.(1)求证:;(2)若,M为线段AE的中点,求证:平面.【解析】(1)设中点为O,连接OC,OE,则由知, 又已知,所以平面OCE. 所以,即OE是BD的垂直平分线,所以. (2)取AB中点N,连接,M是AE的中点, 是等边三角形,.由BCD=120知,CBD=30, 所以ABC=60+30=90,即,所以NDB
8、C, 所以平面MND平面BEC,又DM 平面MND,故DM平面BEC. 另证:延长相交于点,连接EF.因为CB=CD,. 因为为正三角形,所以,则, 所以,又, 所以D是线段AF的中点,连接DM, 又由点M是线段AE的中点知, 而平面BEC, 平面BEC,故DM平面BEC. 【例8】(2011天津)如图,在四棱锥PABCD中,底面ABCD为平行四边形ADC45,ADAC1,O为AC的中点,PO平面ABCD,PO2,M为PD的中点 (1)证明:PB平面ACM; (2)证明:AD平面PAC;(3)求直线AM与平面ABCD所成角的正切值【解析】(1)证明:连接BD,MO,在平行四边形ABCD中,因为
9、O为AC的中点,所以O为BD的中点又M为PD的中点,所以PBMO.因为PB平面ACM,MO平面ACM,所以PB平面ACM.(2)证明:因为ADC45,且ADAC1,所以DAC90,即ADAC,又PO平面ABCD,AD平面ABCD,所以POAD.而ACPOO,所以AD平面PAC.(3)取DO中点N,连接MN,AN.因为M为PD的中点,所以MNPO,且MNPO1.由PO平面ABCD,得MN平面ABCD,所以MAN是直线AM与平面ABCD所成的角,在RtDAO中,AD1,AO,所以DO,从而ANDO.在RtANM中,tanMAN,即直线AM与平面ABCD所成角的正切值为.【例9】(2012湖南文)如
10、图,在四棱锥P-ABCD中,PA平面ABCD,底面ABCD是等腰梯形,ADBC,ACBD.(1)证明:BDPC;(2)若AD=4,BC=2,直线PD与平面PAC所成的角为30,求四棱锥P-ABCD的体积. 【解析】(1)因为 又是平面PAC内的两条相较直线,所以BD平面PAC, 而平面PAC,所以. (2)设AC和BD相交于点O,连接PO,由()知,BD平面PAC, 所以是直线PD和平面PAC所成的角,从而. 由BD平面PAC,平面PAC,知. 在中,由,得PD=2OD. 因为四边形ABCD为等腰梯形,所以均为等腰直角三角形, 从而梯形ABCD的高为于是梯形ABCD面积 在等腰三角形AOD中,
11、 所以 故四棱锥的体积为. 【例10】(2012新课标理)如图,直三棱柱中,是棱的中点,(1)证明:(2)求二面角的大小.【解析】(1)在中, 得: 同理: 得:面 (2)面 取的中点,过点作于点,连接 ,面面面 得:点与点重合 且是二面角的平面角 设,则, 既二面角的大小为 【课堂练习】(2012浙江理)已知矩形ABCD,AB=1,BC=.将ABD沿矩形的对角线BD所在的直线进行翻着,在翻着过程中()A存在某个位置,使得直线AC与直线BD垂直 B存在某个位置,使得直线AB与直线CD垂直 C存在某个位置,使得直线AD与直线BC垂直 D对任意位置,三直线“AC与BD”,“AB与CD”,“AD与B
12、C”均不垂直(2012四川理)下列命题正确的是()A若两条直线和同一个平面所成的角相等,则这两条直线平行B若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D若两个平面都垂直于第三个平面,则这两个平面平行3(2011重庆)到两互相垂直的异面直线的距离相等的点()A只有1个B恰有3个C恰有4个 D有无穷多个4(2012上海)已知空间三条直线l,m,n若l与m异面,且l与n异面,则 ()Am与n异面.Bm与n相交.Cm与n平行.Dm与n异面、相交、平行均有可能.5(2011烟台)已知m,n是两条不同的直线,为两个不同的平面,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 垂直 面面 知识点 总结 经典 例题 解析 考题 练习 答案 补课
限制150内