空间几何—平行垂直证明(高一).doc
《空间几何—平行垂直证明(高一).doc》由会员分享,可在线阅读,更多相关《空间几何—平行垂直证明(高一).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除空间几何平行垂直证明专题训练v 知识点讲解一、“平行关系”常见证明方法(一)直线与直线平行的证明1) 利用某些平面图形的特性:如平行四边形的对边互相平行2) 利用三角形中位线性质3) 利用空间平行线的传递性:m/a,m/ba/b平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理:b如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。5)利用平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行 6)利用直线与平面垂直的性质定理:垂直于同一个平面的两条直线互相平行。
2、7)利用平面内直线与直线垂直的性质:在同一个平面内,垂直于同一条直线的两条直线互相平行。8)利用定义:在同一个平面内且两条直线没有公共点(二)直线与平面平行的证明1) 利用直线与平面平行的判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。2) 利用平面与平面平行的性质推论:两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。a3) 利用定义:直线在平面外,且直线与平面没有公共点(二)平面与平面平行的证明常见证明方法:1) 利用平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。P2) 利用某些空间几何体的特性:如正方体的上下底
3、面互相平行等3) 利用定义:两个平面没有公共点二、“垂直关系”常见证明方法(一)直线与直线垂直的证明1) 利用某些平面图形的特性:如直角三角形的两条直角边互相垂直等。2) 看夹角:两条共(异)面直线的夹角为90,则两直线互相垂直。3) 利用直线与平面垂直的性质:如果一条直线与一个平面垂直,则这条直线垂直于此平面内的所有直线。 b4) 利用平面与平面垂直的性质推论:如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这两条直线互相垂直。b5) 利用常用结论:c 如果两条直线互相平行,且其中一条直线垂直于第三条直线,则另一条直线也垂直于第三条直线。b b 如果有一条直线垂直于一个平面,另
4、一条直线平行于此平面,那么这两条直线互相垂直。(二)直线与平面垂直的证明1) 利用某些空间几何体的特性:如长方体侧棱垂直于底面等2) 看直线与平面所成的角:如果直线与平面所成的角是直角,则这条直线垂直于此平面。3) 利用直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线垂直于此平面。4) 利用平面与平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。5) 利用常用结论: 一条直线平行于一个平面的一条垂线,则该直线也垂直于此平面。 两个平面平行,一直线垂直于其中一个平面,则该直线也垂直于另一个平面。(三)平面与平面垂直的证明1) 利用某些空
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 几何 平行 垂直 证明
限制150内