高考数学数列大题专题训练.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高考数学数列大题专题训练.docx》由会员分享,可在线阅读,更多相关《高考数学数列大题专题训练.docx(58页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高考数学数列大题专题训练高考数学数列大题专题训练高考数学数列大题专题训练命题:郭治击 审题:钟世美1.在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作,再令,n1.()求数列的通项公式;()设,求数列的前n项和.2.若数列满足,数列为数列,记=()写出一个满足,且0的数列;()若,n=2000,证明:E数列是递增数列的充要条
2、件是=2011;()对任意给定的整数n(n2),是否存在首项为0的E数列,使得=0?如果存在,写一个满足条件的E数列;如果不存在,说明理由。3.已知等比数列an的公比q=3,前3项和S3=。(I)求数列an的通项公式;(II)若函数在处取得最大值,且最大值为a3,求函数f(x)的解析式。4.设b0,数列满足a1=b,.(1)求数列的通项公式;(2)证明:对于一切正整数n,5.已知数列的前项和为,且满足:, N*,()求数列的通项公式;()若存在 N*,使得,成等差数列,是判断:对于任意的N*,且,是否成等差数列,并证明你的结论6. 已知函数() =,g ()=+。 ()求函数h ()=()-g
3、 ()的零点个数,并说明理由; ()设数列满足,证明:存在常数M,使得对于任意的,都有.7.已知两个等比数列,满足(1)若,求数列的通项公式;(2)若数列唯一,求的值8、已知等差数列an满足a2=0,a6+a8=-10(I)求数列an的通项公式; (II)求数列的前n项和9.设数列满足且()求的通项公式 ()设10.等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列第一列第二列第三列第一行3210第二行6414第三行9818()求数列的通项公式;()若数列满足:,求数列的前n项和11.已知数列和的通项公式分别为,(),将集合中的元素从小到大依次排列,构成数列。
4、求 求证:在数列中、但不在数列中的项恰为 求数列的通项公式。12.(1)写出并判断是否为等比数列。若是,给出证明;若不是,说明理由;(II)设,求数列的前n项和13.已知数列与满足:, ,且()求的值 ()设,证明:是等比数列(III)设证明:14.等比数列的各项均为正数,且(1)求数列的通项公式.(2)设 求数列的前n项和.15.已知公差不为0的等差数列的首项为a(),设数列的前n项和为,且,成等比数列(1)求数列的通项公式及(2)记,当时,试比较与的大小16.设实数数列的前n项和,满足(I)若成等比数列,求和;(II)求证:对参考答案1.解:()设构成等比数列,其中,则并利用,得()由题意
5、和()中计算结果,知另一方面,利用得所以2.解:()0,1,2,1,0是一具满足条件的E数列A5。(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5)()必要性:因为E数列A5是递增数列,所以.所以A5是首项为12,公差为1的等差数列.所以a2000=12+(20001)1=2011.充分性,由于a2000a10001,a2000a10001a2a11所以a2000a19999,即a2000a1+1999. 又因为a1=12,a2000=2011,所以a2000=a1+1999.是递增数列.综上,结论得证。()令因为所以因为所以为偶数,所以要使为偶数,即4整除.当时,有当的项满足,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 数列 专题 训练
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内