《高中数学组卷——数列高考题训练.doc》由会员分享,可在线阅读,更多相关《高中数学组卷——数列高考题训练.doc(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高中数学组卷数列高考题训练高中数学组卷数列高考题训练高中数学组卷数列高考题训练一解答题(共15小题)1等差数列an中,a3+a4=4,a5+a7=6()求an的通项公式;()设bn=an,求数列bn的前10项和,其中x表示不超过x的最大整数,如0.9=0,2.6=22已知数列an的前n项和Sn=3n2+8n,bn是等差数列,且an=bn+bn+1()求数列bn的通项公
2、式;()令cn=,求数列cn的前n项和Tn3已知an是公差为3的等差数列,数列bn满足b1=1,b2=,anbn+1+bn+1=nbn()求an的通项公式;()求bn的前n项和4已知an是等比数列,前n项和为Sn(nN*),且=,S6=63(1)求an的通项公式;(2)若对任意的nN*,bn是log2an和log2an+1的等差中项,求数列(1)nb的前2n项和5设数列an的前n项和为Sn,已知2Sn=3n+3()求an的通项公式;()若数列bn,满足anbn=log3an,求bn的前n项和Tn6设等差数列an的公差为d,前n项和为Sn,等比数列bn的公比为q,已知b1=a1,b2=2,q=d
3、,S10=100(1)求数列an,bn的通项公式(2)当d1时,记cn=,求数列cn的前n项和Tn7Sn为数列an的前n项和,已知an0,an2+2an=4Sn+3(I)求an的通项公式:()设bn=,求数列bn的前n项和8已知数列an是递增的等比数列,且a1+a4=9,a2a3=8(1)求数列an的通项公式;(2)设Sn为数列an的前n项和,bn=,求数列bn的前n项和Tn9已知数列an是首项为正数的等差数列,数列的前n项和为(1)求数列an的通项公式;(2)设bn=(an+1)2,求数列bn的前n项和Tn10已知数列an满足an+2=qan(q为实数,且q1),nN*,a1=1,a2=2,
4、且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和an的通项公式;(2)设bn=,nN*,求数列bn的前n项和11设数列 an的前n项和为Sn,nN*已知a1=1,a2=,a3=,且当n2时,4Sn+2+5Sn=8Sn+1+Sn1(1)求a4的值;(2)证明:an+1an为等比数列;(3)求数列an的通项公式12数列an满足:a1+2a2+nan=4,nN+(1)求a3的值;(2)求数列an的前 n项和Tn;(3)令b1=a1,bn=+(1+)an(n2),证明:数列bn的前n项和Sn满足Sn2+2lnn13已知数列an的前n项和Sn=,nN*(1)求数列an的通项公式;(2)证明
5、:对任意的n1,都存在mN*,使得a1,an,am成等比数列14数列an满足a1=1,nan+1=(n+1)an+n(n+1),nN*()证明:数列是等差数列;()设bn=3n,求数列bn的前n项和Sn15设等差数列an的公差为d,点(an,bn)在函数f(x)=2x的图象上(nN*)(1)若a1=2,点(a8,4b7)在函数f(x)的图象上,求数列an的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2,求数列的前n项和Tn一解答题(共15小题)1等差数列an中,a3+a4=4,a5+a7=6()求an的通项公式;()设bn=an,求数列bn的前1
6、0项和,其中x表示不超过x的最大整数,如0.9=0,2.6=2【解答】解:()设等差数列an的公差为d,a3+a4=4,a5+a7=6,解得:,an=;()bn=an,b1=b2=b3=1,b4=b5=2, b6=b7=b8=3,b9=b10=4故数列bn的前10项和S10=31+22+33+24=242已知数列an的前n项和Sn=3n2+8n,bn是等差数列,且an=bn+bn+1()求数列bn的通项公式;()令cn=,求数列cn的前n项和Tn【解答】解:()Sn=3n2+8n,n2时,an=SnSn1=6n+5,n=1时,a1=S1=11,an=6n+5;an=bn+bn+1,an1=bn
7、1+bn,anan1=bn+1bn12d=6,d=3,a1=b1+b2,11=2b1+3,b1=4,bn=4+3(n1)=3n+1;()cn=6(n+1)2n,Tn=622+322+(n+1)2n,2Tn=6222+323+n2n+(n+1)2n+1,可得Tn=622+22+23+2n(n+1)2n+1=12+66(n+1)2n+1=(6n)2n+1=3n2n+2,Tn=3n2n+23已知an是公差为3的等差数列,数列bn满足b1=1,b2=,anbn+1+bn+1=nbn()求an的通项公式;()求bn的前n项和【解答】解:()anbn+1+bn+1=nbn当n=1时,a1b2+b2=b1b
8、1=1,b2=,a1=2,又an是公差为3的等差数列,an=3n1,()由(I)知:(3n1)bn+1+bn+1=nbn即3bn+1=bn即数列bn是以1为首项,以为公比的等比数列,bn的前n项和Sn=(13n)=4已知an是等比数列,前n项和为Sn(nN*),且=,S6=63(1)求an的通项公式;(2)若对任意的nN*,bn是log2an和log2an+1的等差中项,求数列(1)nb的前2n项和【解答】解:(1)设an的公比为q,则=,即1=,解得q=2或q=1若q=1,则S6=0,与S6=63矛盾,不符合题意q=2,S6=63,a1=1an=2n1(2)bn是log2an和log2an+
9、1的等差中项,bn=(log2an+log2an+1)=(log22n1+log22n)=nbn+1bn=1bn是以为首项,以1为公差的等差数列设(1)nbn2的前2n项和为Tn,则Tn=(b12+b22)+(b32+b42)+(b2n12+b2n2)=b1+b2+b3+b4+b2n1+b2n=2n25设数列an的前n项和为Sn,已知2Sn=3n+3()求an的通项公式;()若数列bn,满足anbn=log3an,求bn的前n项和Tn【解答】解:()因为2Sn=3n+3,所以2a1=31+3=6,故a1=3,当n1时,2Sn1=3n1+3,此时,2an=2Sn2Sn1=3n3n1=23n1,即
10、an=3n1,所以an=()因为anbn=log3an,所以b1=,当n1时,bn=31nlog33n1=(n1)31n,所以T1=b1=;当n1时,Tn=b1+b2+bn=+(131+232+(n1)31n),所以3Tn=1+(130+231+332+(n1)32n),两式相减得:2Tn=+(30+31+32+32n(n1)31n)=+(n1)31n=,所以Tn=,经检验,n=1时也适合,综上可得Tn=6设等差数列an的公差为d,前n项和为Sn,等比数列bn的公比为q,已知b1=a1,b2=2,q=d,S10=100(1)求数列an,bn的通项公式(2)当d1时,记cn=,求数列cn的前n项
11、和Tn【解答】解:(1)设a1=a,由题意可得,解得,或,当时,an=2n1,bn=2n1;当时,an=(2n+79),bn=9;(2)当d1时,由(1)知an=2n1,bn=2n1,cn=,Tn=1+3+5+7+9+(2n1),Tn=1+3+5+7+(2n3)+(2n1),Tn=2+(2n1)=3,Tn=67Sn为数列an的前n项和,已知an0,an2+2an=4Sn+3(I)求an的通项公式:()设bn=,求数列bn的前n项和【解答】解:(I)由an2+2an=4Sn+3,可知an+12+2an+1=4Sn+1+3两式相减得an+12an2+2(an+1an)=4an+1,即2(an+1+
12、an)=an+12an2=(an+1+an)(an+1an),an0,an+1an=2,a12+2a1=4a1+3,a1=1(舍)或a1=3,则an是首项为3,公差d=2的等差数列,an的通项公式an=3+2(n1)=2n+1:()an=2n+1,bn=(),数列bn的前n项和Tn=(+)=()=8已知数列an是递增的等比数列,且a1+a4=9,a2a3=8(1)求数列an的通项公式;(2)设Sn为数列an的前n项和,bn=,求数列bn的前n项和Tn【解答】解:(1)数列an是递增的等比数列,且a1+a4=9,a2a3=8a1+a4=9,a1a4=a2a3=8解得a1=1,a4=8或a1=8,
13、a4=1(舍),解得q=2,即数列an的通项公式an=2n1;(2)Sn=2n1,bn=,数列bn的前n项和Tn=+=19已知数列an是首项为正数的等差数列,数列的前n项和为(1)求数列an的通项公式;(2)设bn=(an+1)2,求数列bn的前n项和Tn【解答】解:(1)设等差数列an的首项为a1、公差为d,则a10,an=a1+(n1)d,an+1=a1+nd,令cn=,则cn=,c1+c2+cn1+cn=+=,又数列的前n项和为,a1=1或1(舍),d=2,an=1+2(n1)=2n1;(2)由(1)知bn=(an+1)2=(2n1+1)22n1=n4n,Tn=b1+b2+bn=141+
14、242+n4n,4Tn=142+243+(n1)4n+n4n+1,两式相减,得3Tn=41+42+4nn4n+1=4n+1,Tn=10已知数列an满足an+2=qan(q为实数,且q1),nN*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和an的通项公式;(2)设bn=,nN*,求数列bn的前n项和【解答】解:(1)an+2=qan(q为实数,且q1),nN*,a1=1,a2=2,a3=q,a5=q2,a4=2q,又a2+a3,a3+a4,a4+a5成等差数列,23q=2+3q+q2,即q23q+2=0,解得q=2或q=1(舍),an=;(2)由(1)知b
15、n=,nN*,记数列bn的前n项和为Tn,则Tn=1+2+3+4+(n1)+n,2Tn=2+2+3+4+5+(n1)+n,两式相减,得Tn=3+n=3+n=3+1n=411设数列 an的前n项和为Sn,nN*已知a1=1,a2=,a3=,且当n2时,4Sn+2+5Sn=8Sn+1+Sn1(1)求a4的值;(2)证明:an+1an为等比数列;(3)求数列an的通项公式【解答】(1)解:当n=2时,4S4+5S2=8S3+S1,即,解得:;(2)证明:4Sn+2+5Sn=8Sn+1+Sn1(n2),4Sn+24Sn+1+SnSn1=4Sn+14Sn(n2),即4an+2+an=4an+1(n2),
16、4an+2+an=4an+1=数列是以=1为首项,公比为的等比数列;(3)解:由(2)知,是以为首项,公比为的等比数列,即,是以为首项,4为公差的等差数列,即,数列an的通项公式是12数列an满足:a1+2a2+nan=4,nN+(1)求a3的值;(2)求数列an的前 n项和Tn;(3)令b1=a1,bn=+(1+)an(n2),证明:数列bn的前n项和Sn满足Sn2+2lnn【解答】解:(1)a1+2a2+nan=4,nN+a1=43=1,1+2a2=4=2,解得a2=,a1+2a2+nan=4,nN+a1+2a2+(n1)an1=4,nN+两式相减得nan=4(4)=,n2,则an=,n2
17、,当n=1时,a1=1也满足,an=,n1,则a3=;(2)an=,n1,数列an是公比q=,则数列an的前 n项和Tn=221n(3)bn=+(1+)an,b1=a1,b2=+(1+)a2,b3=(1+)a3,bn=+(1+)an,Sn=b1+b2+bn=(1+)a1+(1+)a2+(1+)an=(1+)(a1+a2+an)=(1+)Tn=(1+)(221n)2(1+),设f(x)=lnx+1,x1,则f(x)=即f(x)在(1,+)上为增函数,f(1)=0,即f(x)0,k2,且kN时,f()=ln+10,即ln,ln,即=lnn,2(1+)=2+2(+)2+2lnn,即Sn2(1+lnn
18、)=2+2lnn13已知数列an的前n项和Sn=,nN*(1)求数列an的通项公式;(2)证明:对任意的n1,都存在mN*,使得a1,an,am成等比数列【解答】(1)解:Sn=,nN*当n2时,an=SnSn1=3n2,(*)当n=1时,a1=S1=1因此当n=1时,(*)也成立数列an的通项公式an=3n2(2)证明:对任意的n1,假设都存在mN*,使得a1,an,am成等比数列则,(3n2)2=1(3m2),化为m=3n24n+2,n1,m=3n24n+2=1,因此对任意的n1,都存在m=3n24n+2N*,使得a1,an,am成等比数列14数列an满足a1=1,nan+1=(n+1)a
19、n+n(n+1),nN*()证明:数列是等差数列;()设bn=3n,求数列bn的前n项和Sn【解答】证明()nan+1=(n+1)an+n(n+1),数列是以1为首项,以1为公差的等差数列;()由()知,bn=3n=n3n,3n1+n3n3n+n3n+1得3nn3n+1=15设等差数列an的公差为d,点(an,bn)在函数f(x)=2x的图象上(nN*)(1)若a1=2,点(a8,4b7)在函数f(x)的图象上,求数列an的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2,求数列的前n项和Tn【解答】解:(1)点(an,bn)在函数f(x)=2x的图象上,又等差数列an的公差为d,=2d,点(a8,4b7)在函数f(x)的图象上,=b8,=4=2d,解得d=2又a1=2,Sn=2n+=n23n(2)由f(x)=2x,f(x)=2xln2,函数f(x)的图象在点(a2,b2)处的切线方程为,又,令y=0可得x=,解得a2=2d=a2a1=21=1an=a1+(n1)d=1+(n1)1=n,bn=2nTn=+,2Tn=1+,两式相减得Tn=1+=-
限制150内