排列组合基础知识及习题分析.doc
《排列组合基础知识及习题分析.doc》由会员分享,可在线阅读,更多相关《排列组合基础知识及习题分析.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除排列组合基础知识及习题分析 在介绍排列组合方法之前 我们先来了解一下基本的运算公式! C5取3(543)/(321) C6取2(65)/(21) 通过这2个例子 看出 CM取N 公式 是种子数M开始与自身连续的N个自然数的降序乘积做为分子。 以取值N的阶层作为分母 P53543 P66654321 通过这2个例子 PMN从M开始与自身连续N个自然数的降序乘积 当NM时 即M的阶层 排列、组合的本质是研究“从n个不同的元素中,任取m (mn)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模
2、式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”; 其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分 类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个 标准下进行分类;其次,分类时要注意满足两条基本原则:完成这件事的任何一种方法必须属于某一类;分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完
3、成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成. 两 个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完 成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个 步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理. 在解决排列与组合的应用题时应注意以下几点: 1有限制条件的排列问题常见命题形式: “在”与“不在” “邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: “相邻”问题在解
4、题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法. “不邻”问题在解题时最常用的是“插空排列法”. “在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置. 元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果. 2有限制条件的组合问题,常见的命题形式: “含”与“不含” “至少”与“至多” 在解题时常用的方法有“直接法”或“间接法”. 3 在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要
5、的思想方法. 提供10道习题供大家练习 1、三边长均为整数,且最大边长为11的三角形的个数为( C ) (A)25个 (B)26个 (C)36个 (D)37个 【解析】 根据三角形边的原理 两边之和大于第三边,两边之差小于第三边 可见最大的边是11 则两外两边之和不能超过22 因为当三边都为11时 是两边之和最大的时候 因此我们以一条边的长度开始分析 如果为11,则另外一个边的长度是11,10,9,8,7,6,。1 如果为10 则另外一个边的长度是10,9,8。2, (不能为1 否则两者之和会小于11,不能为11,因为第一种情况包含了11,10的组合) 如果为9 则另外一个边的长度是 9,8,
6、7,。3 (理由同上 ,可见规律出现) 规律出现 总数是1197。1(111)6236 2、 (1)将4封信投入3个邮筒,有多少种不同的投法? 【解析】 每封信都有3个选择。信与信之间是分步关系。比如说我先放第1封信,有3种可能性。接着再放第2封,也有3种可能性,直到第4封, 所以分步属于乘法原则 即333334 (2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法? 【解析】跟上述情况类似 对于每个旅客我们都有4种选择。彼此之间选择没有关系 不够成分类关系。属于分步关系。如:我们先安排第一个旅客是4种,再安排第2个旅客是4种选择。知道最后一个旅客也是4种可能。根据分步原则属于乘法关系 即
7、44443 (3)8本不同的书,任选3本分给3个同学,每人一本,有多少种不同的分法? 【解析】分步来做 第一步:我们先选出3本书 即多少种可能性 C8取356种 第二步:分配给3个同学。 P336种 这 里稍微介绍一下为什么是P33 ,我们来看第一个同学可以有3种书选择,选择完成后,第2个同学就只剩下2种选择的情况,最后一个同学没有选择。即321 这是分步选择符合乘法原则。最常见的例子就是 1,2,3,4四个数字可以组成多少4位数? 也是满足这样的分步原则。 用P来计算是因为每个步骤之间有约束作用 即下一步的选择受到上一步的压缩。 所以该题结果是566336 3、 七个同学排成一横排照相. (
8、1)某甲不站在排头也不能在排尾的不同排法有多少种? (3600) 【解析】 这个题目我们分2步完成 第一步: 先给甲排 应该排在中间的5个位置中的一个 即C5取15 第二步: 剩下的6个人即满足P原则 P66720 所以 总数是72053600 (2)某乙只能在排头或排尾的不同排法有多少种? (1440) 【解析】 第一步:确定乙在哪个位置 排头排尾选其一 C2取12 第二步:剩下的6个人满足P原则 P66720 则总数是 72021440 (3)甲不在排头或排尾,同时乙不在中间的不同排法有多少种? (3120) 【解析】特殊情况先安排特殊 第一种情况:甲不在排头排尾 并且不在中间的情况 去除
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排列组合 基础知识 习题 分析
限制150内