苏教版-多边形内角和教案.doc
《苏教版-多边形内角和教案.doc》由会员分享,可在线阅读,更多相关《苏教版-多边形内角和教案.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date苏教版-多边形内角和教案课题:探索多边形的内角和课题:探索多边形的内角和一、教学目标:(1)知识与技能:掌握多边形的内角和与外角和的计算方法,并能用其解决一些简单的问题;通过多边形内角和计算公式的推导,体验转化和类比的数学思想方法。(2)过程与方法:、让学生经历猜想、探索、推理、归纳等过程,发展学生的合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的
2、思想方法。、通过把多边形转化为三角形,体会转化思想在几何中的运用,让学生体会从特殊到一般的认识问题的方法。通过探索多边形的内角和与外角和,让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。(3)情感态度与价值观:通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。同时,体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。二、教学重、难点:重点:探索多边形的内角和及外角和公式。难点:多边形内角和公式的推导。三、教法学法设计:以教师的精讲、点拨引导为主,辅以引导发现、合作交流。四、教具、学具准备:三角板、量角器、作业纸。五、教学过程:(一)复习提问,导
3、入新课问题:三角形的内角和是多少度?我们不仅知道三角形的内角和是180,而且还利用多种方法来验证,谁能说一说我们可以采用哪些方法? 【设计说明】直接提出问题,唤醒学生已有的知识,把学生引到本节课思维的最近发展区,为新课学习提供知识铺垫。(二)引申思考,探索新知我们学过的平面图形不仅仅只有三角形,还有四边形、五边形、六边形等等,像这样的多边形的内角和是多少度呢?其中有没有什么规律呢?这就是我们今天要研究的多边形的内角和。(1)探究活动一:探索四边形内角和。问题:我们已经知道正方形和长方形的内角和为3600,那么任意四边形的内角和是多少?你是怎么得到的? 在学生独立思考的基础上,分组交流,并汇总解
4、决问题的方法: 做法测量法。量出任意一个四边形每个内角度数,然后相加为360(让学生明确使用这种做法的缺陷是往往会引起误差,得不到预想的结果)做法拼图法。把四个角拼在一起刚好是一个周角360(让学生明确使用这种做法的局限性,不是任何情况都可以采用这种办法验证四边形的内角和。) ABCD 教师在做法的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化为两个三角形. 连结AC,四边形的内角和为2180=360 【设计说明】通过活动一的探究,学生易把四边形分割成三角形,从而把四边形的内角和与三角形的内角和有效的联系起来,求出任意四边形的内角和。这个环节着重渗透分割转化的思想方法。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 苏教版 多边形 内角 教案
限制150内