用高斯消元法求解线性代数方程组.doc
《用高斯消元法求解线性代数方程组.doc》由会员分享,可在线阅读,更多相关《用高斯消元法求解线性代数方程组.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除用高斯消元法求解线性代数方程组 (X*是方程组的精确解)1 高斯消去法1.1 基本思想及计算过程高斯(Gauss)消去法是解线性方程组最常用的方法之一,它的基本思想是通过逐步消元,把方程组化为系数矩阵为三角形矩阵的同解方程组,然后用回代法解此三角形方程组得原方程组的解。为便于叙述,先以一个三阶线性方程组为例来说明高斯消去法的基本思想。把方程(I)乘()后加到方程(II)上去,把方程(I)乘()后加到方程(III)上去,即可消去方程(II)、(III)中的x1,得同解方程组将方程(II)乘()后加于方程(III),得同解方程组:由回代公式(3.5)
2、得x3 = 2,x2 = 8,x1 = -13。下面考察一般形式的线性方程组的解法,为叙述问题方便,将bi写成ai, n+1,i = 1, 2,n。 (1-1)如果a11 0,将第一个方程中x1的系数化为1,得其中, j = 1, , n + 1(记,i = 1, 2, , n; j = 1, 2, , n + 1)从其它n 1个方程中消x1,使它变成如下形式 (1-2)其中, 由方程(1-1)到(1-2)的过程中,元素起着重要的作用,特别地,把称为主元素。如果(1-2)中,则以为主元素,又可以把方程组(1-2)化为: (1-3)针对(1-3) 继续消元,重复同样的手段,第k步所要加工的方程组
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 用高斯消元法 求解 线性代数 方程组
限制150内