重要!!高中数学圆锥曲线---圆锥曲线的性质对比.doc
《重要!!高中数学圆锥曲线---圆锥曲线的性质对比.doc》由会员分享,可在线阅读,更多相关《重要!!高中数学圆锥曲线---圆锥曲线的性质对比.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除高考数学圆锥曲线部分知识点梳理一、 方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。点与曲线的关系:若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上f(x0,y 0)=0;点P0(x0,y0)不在曲线C上f(x0,y0)0。两条曲线的交点:若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y
2、)=0,则点P0(x0,y0)是C1,C2的交点方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点。二、圆:1、定义:点集MOM=r,其中定点O为圆心,定长r为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r的圆方程是(x-a)2+(y-b)2=r2圆心在坐标原点,半径为r的圆方程是x2+y2=r2(2)一般方程:当D2+E2-4F0时,一元二次方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,圆心为半径是。配方,将方程x2+y2+Dx+Ey+F=0化为(x+)2+(y+)2=当D2+E2-4F=0时,方程表示一个点(-,-);当D2+E2-4
3、F0时,方程不表示任何图形.(3) 点与圆的位置关系 已知圆心C(a,b),半径为r,点M的坐标为(x0,y0),则MCr点M在圆C内,MC=r点M在圆C上,MCr点M在圆C内,其中MC=。(4) 直线和圆的位置关系:直线和圆有相交、相切、相离三种位置关系:直线与圆相交有两个公共点;直线与圆相切有一个公共点;直线与圆相离没有公共点。直线和圆的位置关系的判定:(i)判别式法;(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离与半径r的大小关系来判定。三、圆锥曲线的统一定义:平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l的距离之 比是一个常数e(e0)
4、,则动点的轨迹叫做圆锥曲线。其中定点F(c,0)称为焦点,定直线l称为准线,正常数e称为离心率。当0e1时,轨迹为椭圆;当e=1时,轨迹为抛物线;当e1时,轨迹为双曲线。四、椭圆、双曲线、抛物线:椭圆双曲线抛物线定义1到两定点F1,F2的距离之和为定值2a(2a|F1F2|)的点的轨迹2与定点和直线的距离之比为定值e的点的轨迹.(0e1)1到两定点F1,F2的距离之差的绝对值为定值2a(02a1)与定点和直线的距离相等的点的轨迹.轨迹条件点集:(MMF1+MF2=2a,F 1F22a点集:MMF1-MF2.=2a,F2F22a.点集M MF=点M到直线l的距离.图形方程标准方程(0)(a0,b
5、0)参数方程(t为参数)范围axa,byb|x| a,yRx0中心原点O(0,0)原点O(0,0)顶点(a,0), (a,0), (0,b) , (0,b)(a,0), (a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a, 虚轴长2b.x轴焦点F1(c,0), F2(c,0)F1(c,0), F2(c,0)准 线x=准线垂直于长轴,且在椭圆外.x=准线垂直于实轴,且在两顶点的内侧.x=-准线与焦点位于顶点两侧,且到顶点的距离相等.焦距2c (c=)2c (c=)离心率e=1【备注1】双曲线:等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.共轭双曲线:以
6、已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.【备注2】抛物线:(1)抛物线=2px(p0)的焦点坐标是(,0),准线方程x=- ,开口向右;抛物线=-2px(p0)的焦点坐标是(-,0),准线方程x=,开口向左;抛物线=2py(p0)的焦点坐标是(0,),准线方程y=-,开口向上;抛物线=-2py(p0)的焦点坐标是(0,-),准线方程y=,开口向下.(2)抛物线=2px(p0)上的点M(x0,y0)与焦点F的距离;抛物线=-2px(p0)上
7、的点M(x0,y0)与焦点F的距离(3)设抛物线的标准方程为=2px(p0),则抛物线的焦点到其顶点的距离为,顶点到准线的距离,焦点到准线的距离为p.(4)已知过抛物线=2px(p0)焦点的直线交抛物线于A、B两点,则线段AB称为焦点弦,设A(x1,y1),B(x2,y2),则弦长=+p或(为直线AB的倾斜角),(叫做焦半径).五、坐标的变换:(1)坐标变换:在解析几何中,把坐标系的变换(如改变坐标系原点的位置或坐标轴的方向)叫做坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点的坐标与曲线的方程.(2)坐标轴的平移:坐标轴的方向和长度单位不改变,只改变原点的位置
8、,这种坐标系的变换叫做坐标轴的平移,简称移轴。(3)坐标轴的平移公式:设平面内任意一点M,它在原坐标系xOy中的坐标是9x,y),在新坐标系x Oy中的坐标是.设新坐标系的原点O在原坐标系xOy中的坐标是(h,k),则 或 叫做平移(或移轴)公式.(4) 中心或顶点在(h,k)的圆锥曲线方程见下表: 方 程焦 点焦 线对称轴椭圆+=1(c+h,k)x=+hx=hy=k+ =1(h,c+k)y=+kx=hy=k双曲线-=1(c+h,k)x=+kx=hy=k-=1(h,c+h)y=+kx=hy=k抛物线(y-k)2=2p(x-h)(+h,k)x=-+hy=k(y-k)2=-2p(x-h)(-+h,
9、k)x=+hy=k(x-h)2=2p(y-k)(h, +k)y=-+kx=h(x-h)2=-2p(y-k)(h,- +k)y=+kx=h六、椭圆的常用结论:1. 点P处的切线PT平分PF1F2在点P处的外角.2. PT平分PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ为直径的圆必与对应准线相离.4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.5. 若在椭圆上,则过的椭圆的切线方程是.6. 若在椭圆外,则过作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是.7. 椭圆 (ab0)的左右焦点分别为F1,F
10、 2,点P为椭圆上任意一点,则椭圆的焦点角形的面积为.8. 椭圆(ab0)的焦半径公式,( ,).9. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MFNF.10. 过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MFNF.11. AB是椭圆的不平行于对称轴的弦,M为AB的中点,则,即。12. 若在椭圆内,则被Po所平分的中点弦的方程是;【推论】:1、若在椭圆内,则过Po的弦中点的轨迹方程是。椭圆(abo)的两个顶点为,,与y轴平行的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 重要 高中数学 圆锥曲线 性质 对比
限制150内