空间几何体的三视图经典例题.doc
《空间几何体的三视图经典例题.doc》由会员分享,可在线阅读,更多相关《空间几何体的三视图经典例题.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除一、教学目标1. 巩固空间几何体的结构及其三视图和直观图二、上课内容1、回顾上节课内容2、空间几何体的结构及其三视图和直观图知识点回顾3、经典例题讲解4、课堂练习三、课后作业见课后练习一、 上节课知识点回顾1奇偶性1)定义:如果对于函数f(x)定义域内的任意x都有f(x)=f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(x)=f(x),则称f(x)为偶函数。如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。2)利用定义判断函数奇偶性的格式步骤: 首先
2、确定函数的定义域,并判断其定义域是否关于原点对称; 确定f(x)与f(x)的关系; 作出相应结论:若f(x) = f(x) 或 f(x)f(x) = 0,则f(x)是偶函数;若f(x) =f(x) 或 f(x)f(x) = 0,则f(x)是奇函数3)简单性质:图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;2单调性1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2)),那么就说f(x)在区间D上是增函数(减函数);2)如果函数y=f
3、(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。3)设复合函数y= fg(x),其中u=g(x) , A是y= fg(x)定义域的某个区间,B是映射g : xu=g(x) 的象集:若u=g(x) 在 A上是增(或减)函数,y= f(u)在B上也是增(或减)函数,则函数y= fg(x)在A上是增函数;若u=g(x)在A上是增(或减)函数,而y= f(u)在B上是减(或增)函数,则函数y= fg(x)在A上是减函数。4)判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: 任取x1,x2
4、D,且x1x2; 作差f(x1)f(x2); 变形(通常是因式分解和配方); 定号(即判断差f(x1)f(x2)的正负); 下结论(即指出函数f(x)在给定的区间D上的单调性)。3最值1)定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:对于任意的xI,都有f(x)M;存在x0I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:对于任意的xI,都有f(x)M;存在x0I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。2)利用函数单调性的判断函数的最大(小)值的方法: 利用二
5、次函数的性质(配方法)求函数的最大(小)值; 利用图象求函数的最大(小)值; 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间a,b上单调递增,在区间b,c上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数y=f(x)在x=b处有最小值f(b);二、 空间几何体的机构及其三视图和直观图知识点回顾1、 中心投影与平行投影:投影是光线通过物体,向选定的面投射,并在该在由得到图形的方法;平行投影的投影线是互相平行的,中心投影的投影线相交于一点.2、三视图三视图是观测者从不同位置观察同一个几何体,画出的空间
6、几何体的图形。它具体包括:(1)正视图:物体前后方向投影所得到的投影图;(2)侧视图:物体左右方向投影所得到的投影图;(3)俯视图:物体上下方向投影所得到的投影图;三视图的排列规则:主在前,俯在下,左在右画三视图的原则:主、左一样 ,主、俯一样 ,俯、左一样 。3、直观图:斜二测画法建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX,OY,建立直角坐标系;画出斜坐标系,在画直观图的纸上(平面上)画出对应的OX,OY,使=450(或1350),它们确定的平面表示水平平面;画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 几何体 视图 经典 例题
限制150内