连续时间LTI系统的复频域分析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《连续时间LTI系统的复频域分析.doc》由会员分享,可在线阅读,更多相关《连续时间LTI系统的复频域分析.doc(59页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date连续时间LTI系统的复频域分析连续时间LTI系统的复频域分析实验六:连续时间LTI系统的复频域分析一、实验目的1、掌握拉普拉斯变换的物理意义、基本性质及应用。2、掌握用拉普拉斯变换求解连续时间LTI系统的时域响应。3、掌握系统函数的概念,掌握系统函数的零、极点分布(零、极点图)与系统的稳定性、时域特性等之间的相互关系。4、掌握用MATLAB对系统进行变换域分析的常用函
2、数及编程方法。二、实验原理1、连续时间LTI系统的复频域描述拉普拉斯变换(The Laplace transform)主要用于系统分析。描述系统的另一种数学模型就是建立在拉普拉斯变换基础上的“系统函数(System Function)”H(s): 6.1系统函数的实质就是系统单位冲激响应(Impulse Response)的拉普拉斯变换。因此,系统函数也可以定义为: 6.2所以,系统函数的一些特点是和系统的时域响应的特点相对应的。在教材中,我们求系统函数的方法,除了按照拉氏变换的定义式的方法之外,更常用的是根据描述系统的线性常系数微分方程(Linear Constant-Coefficient
3、 Defrential Equation),经过拉氏变换之后得到系统函数。假设描述一个连续时间LTI系统的线性常系数微分方程为: 6.3对式6.3两边做拉普拉斯变换,则有 即 6.4式6.4告诉我们,对于一个能够用线性常系数微分方程描述的连续时间LTI系统,它的系统函数是一个关于复变量s的有理多项式的分式,其分子和分母的多项式系数与系统微分方程左右两端的系数是对应的。根据这一特点,可以很容易的根据微分方程写出系统函数表达式,或者根据系统函数表达式写出系统的微分方程。系统函数大多数情况下是复变函数,因此,可以有多种表示形式:1、直角坐标形式: 2、零极点形式: 3、部分分式和形式: (假设系统的
4、NM,且无重极点) 根据我们所要分析的问题的不同,可以采用不同形式的系统函数表达式。在MATLAB中,表达系统函数的方法是给出系统函数的分子多项式和分母多项式的系数向量。由于系统函数的分子和分母的多项式系数与系统微分方程左右两端的系数是对应的,因此,用MATLAB表示系统函数,就是用系统函数的两个系数向量来表示。应用拉普拉斯变换分析系统的主要内容有:1、分析系统的稳定性;2、分析系统的频率响应。分析方法主要是通过绘制出系统函数的零极点分布图,根据零极点分布情况,判断系统的稳定性。MATLAB中有相应的复频域分析函数,下面简要介绍如下:z,p,k = tf2zp(num,den):求系统函数的零
5、极点,返回值z为零点行向量,p为极点行向量,k为系统传递函数的零极点形式的增益。num为系统函数分子多项式的系数向量,den为系统函数分母多项式系数向量。H = freqs(num,den,w):计算由num,den描述的系统的频率响应特性曲线。返回值H为频率向量规定的范围内的频率响应向量值。如果不带返回值H,则执行此函数后,将直接在屏幕上给出系统的对数频率响应曲线(包括幅频特性取向和相频特性曲线)。x,y = meshgrid(x1,y1):用来产生绘制平面图的区域,由x1,y1来确定具体的区域范围,由此产生s平面区域。meshgrid(x,y,fs):绘制系统函数的零极点曲面图。H = i
6、mpulse(num,den):求系统的单位冲激响应,不带返回值,则直接绘制响应曲线,带返回值则将冲激响应值存于向量h之中。2、系统函数的零极点分布图系统函数的零极点图(Zero-pole diagram)能够直观地表示系统的零点和极点在s平面上的位置,从而比较容易分析系统函数的收敛域(Regin of convergence)和稳定性(stablity)。下面给出一个用于绘制连续时间LTI系统的零极点图的扩展函数splane(num,den):% splane% This function is used to draw the zero-pole plot in the s-planefu
7、nction splane(num,den)p = roots(den); % Determine the polesq = roots(num); % Determine the zerosp = p; q = q; x = max(abs(p q); % Determine the range of real-axisx = x+1;y = x; % Determine the range of imaginary-axisplot(-x x,0 0,:);hold on; % Draw the real-axisplot(0 0,-y y,:);hold on; % Draw the i
8、maginary-axisplot(real(p),imag(p),x);hold on; % Draw the polesplot(real(q),imag(q),o);hold on; % Draw the zerostitle(zero-pole plot);xlabel(Real Part);ylabel(Imaginal Part)axis(-x x -y y); % Determine the display-range对于一个连续时间LTI系统,它的全部特性包括稳定性、因果性(Causality)和它具有何种滤波特性(Frequency-domain aspect)等完全由它的零
9、极点在s平面上的位置所决定。3、拉普拉斯变换与傅里叶变换之间的关系根据课堂上所学的知识可知,拉普拉斯变换与傅里叶变换之间的关系可表述为:傅里叶变换是信号在虚轴上的拉普拉斯变换,也可用下面的数学表达式表示 6.5上式表明,给定一个信号h(t),如果它的拉普拉斯变换存在的话,它的傅里叶变换不一定存在,只有当它的拉普拉斯变换的收敛域包括了整个虚轴,则表明其傅里叶变换是存在的。下面的程序可以以图形的方式,表现拉普拉斯变换与傅里叶变换的这种关系。% Relation_ft_lt% This program is used to observe the relationship between the F
10、ourier transform% and the Laplace transform of a rectangular pulse.clear, close all,a = -0:0.1:5;b = -20:0.1:20;a, b = meshgrid (a, b);c = a+i*b;%确定绘图区域c = (1-exp (-2* (c+eps)./ (c+eps);c = abs (c);%计算拉普拉斯变换subplot (211)mesh (a,b,c); %绘制曲面图surf (a,b,c);view (-60,20) %调整观察视角axis (-0,5,-20,20,0,2);tit
11、le (The Laplace transform of the rectangular pulse);w = -20:0.1:20;Fw = (2*sin(w+eps).*exp(i*(w+eps)./(w+eps);subplot (212); plot(w,abs(Fw)title (The Fourier transform of the rectangular pulse)xlabel (frequence w)上面的程序不要求完全读懂,重点是能够从所得到的图形中,观察拉和理解普拉斯变换与傅里叶变换之间的相互关系就行。4、系统函数的极点分布与系统的稳定性和因果性之间的关系一个稳定的L
12、TI系统,它的单位冲激响应h(t)满足绝对可积条件,即 6.6同时,我们还应该记得,一个信号的傅里叶变换的存在条件就是这个信号满足绝对可积条件,所以,如果系统是稳定的话,那么,该系统的频率响应也必然是存在的。又根据傅里叶变换与拉普拉斯变换之间的关系,可进一步推理出,稳定的系统,其系统函数的收敛域必然包括虚轴。稳定的因果系统,其系统函数的全部极点一定位于s平面的左半平面。所以,对于一个给定的LTI系统,它的稳定性、因果性完全能够从它的零极点分布图上直观地看出。例题6-1:已知一个因果的LTI系统的微分方程为编写程序,绘制出系统的零极点分布图,并说明它的稳定性如何。解:这是一个高阶系统,显然手工计
13、算它的极点是很困难的。可以利用前面给出的扩展函数splane(),来绘制系统的零极点分布图。范例程序如下:% Program6_1% This program plots the zero-pole diagram of an LTI system described% by the linear constant-coefficient differential equationclear, close all,b = 262;a = 1 10 48 148 306 401 262;subplot (221)splane (b,a)title (The zero-pole diagram)执
14、行该程序后,得到系统的零极点分布图如图6.1所示。由于已知该系统是因果系统,从零极点分布图上看,它的全部极点都位于s平面的左半平面上,所以系统是稳定的。然后,直接在命令窗口键入 roots(a)回车后,就得到系统的极点为:ans = -0.5707 + 2.4716i -0.5707 - 2.4716i -2.7378 + 0.0956i -2.7378 - 0.0956i图6.1 -1.6915 + 1.6014i -1.6915 - 1.6014i若题目中没有说明该系统是否是因果的,则需要做详细的分析。从零极点分布图上可以看出,该系统可能的收敛域共有四种可能,另外三种可能如下:(a) 收敛
15、域为Res -2.7378,此种情况说明,该系统是一个反因果系统(Anticausal system),由于收敛域不包含虚轴,故此系统是不稳定的。(b)、(c)收敛域为 -2.7378 Res -1.6915和-1.6915 Res b = 1; a = 1 3 2;例题图6-3 r, p, k = residue (b, a)命令窗口立即给出计算结果为:r = -1 1p = -2 -1k = 根据r、p、k之值,可以写出X(s)的部分分式和的表达式为: 然后根据不同的ROC,可写出X(s)的时域表达式x(t)。第一种情况,ROC为 Res -2,则x(t)为反因果信号,其数学表达式为 第二
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 连续 时间 LTI 系统 复频域 分析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内