量子力学期末考试试卷及答案集.doc
《量子力学期末考试试卷及答案集.doc》由会员分享,可在线阅读,更多相关《量子力学期末考试试卷及答案集.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除量子力学试题集量子力学期末试题及答案(A)选择题(每题3分共36分)1黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论。2关于波函数 的含义,正确的是:BA. 代表微观粒子的几率密度;B. 归一化后, 代表微观粒子出现的几率密度;C. 一定是实数;D. 一定不连续。3对于偏振光通过偏振片,量子论的解释是:DA. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率
2、是不可知的;D.每个光子以一定的几率通过偏振片。4对于一维的薛定谔方程,如果 是该方程的一个解,则:AA. 一定也是该方程的一个解;B. 一定不是该方程的解;C. 与 一定等价;D.无任何结论。5对于一维方势垒的穿透问题,关于粒子的运动,正确的是:CA. 粒子在势垒中有确定的轨迹;B.粒子在势垒中有负的动能;C.粒子以一定的几率穿过势垒;D粒子不能穿过势垒。6如果以表示角动量算符,则对易运算为:BA. ihB. ihC.iD.h7如果算符 、 对易,且 =A,则:BA. 一定不是 的本征态;B. 一定是 的本征态;C.一定是 的本征态;D. 一定是 的本征态。8如果一个力学量 与 对易,则意味
3、着:C A. 一定处于其本征态;B.一定不处于本征态;C.一定守恒;D.其本征值出现的几率会变化。9与空间平移对称性相对应的是:BA. 能量守恒;B.动量守恒;C.角动量守恒;D.宇称守恒。10如果已知氢原子的 n=2能级的能量值为-3.4ev,则 n=5能级能量为:DA. -1.51ev;B.-0.85ev;C.-0.378ev;D. -0.544ev11三维各向同性谐振子,其波函数可以写为,且 l=N-2n,则在一确定的能量 (N+)h下,简并度为:BA. ;B. ;C.N(N+1);D.(N+1)(n+2)12判断自旋波函数 是什么性质:C A. 自旋单态;B.自旋反对称态;C.自旋三态
4、;D. 本征值为1.二 填空题(每题4分共24分)1如果已知氢原子的电子能量为 ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:,光的波长为2如果已知初始三维波函数 ,不考虑波的归一化,则粒子的动量分布函数为 =,任意时刻的波函数为。3在一维势阱(或势垒) 中,在x=x 点波函数(连续或不连续),它的导数(连续或不连续)。4如果选用的函数空间基矢为 ,则某波函数 处于 态的几率用 Dirac符号表示为,某算符 在 态中的平均值的表示为。5在量子力学中,波函数 在算符操作下具有对称性,含义是,与 对应的守恒量 一定是算符。6金属钠光谱的双线结构是,产生的原因是三计算题(40分)1设粒子
5、在一维无限深势阱中,该势阱为:V(x)=0,当0xa,V(x)=,当x0,求粒子的能量和波函数。(10分)2设一维粒子的初态为,求。(10分)3计算表象变换到表象的变换矩阵。(10分)4 。4个玻色子占据3个单态 ,把所有满足对称性要求的态写出来。(10分)B卷一、(共25分)1、厄密算符的本征值和本征矢有什么特点?(4分) 2、什么样的状态是束缚态、简并态和偶宇称态?(6分)3、全同玻色子的波函数有什么特点?并写出两个玻色子组成的全同粒子体系的波函数。(4分)4、在一维情况下,求宇称算符和坐标的共同本征函数。(6分) 5、简述测不准关系的主要内容,并写出时间和能量的测不准关系。(5分)二、(
6、15分)已知厄密算符,满足,且,求1、在A表象中算符、的矩阵表示;2、在A表象中算符的本征值和本征函数;3、从A表象到B表象的幺正变换矩阵S。三、(15分)线性谐振子在时处于状态 ,其中,求1、在时体系能量的取值几率和平均值。2、时体系波函数和体系能量的取值几率及平均值四、(15分)当为一小量时,利用微扰论求矩阵 的本征值至的二次项,本征矢至的一次项。五、(10分)一体系由三个全同的玻色子组成, 玻色子之间无相互作用. 玻色子只有两个可能的单粒子态. 问体系可能的状态有几个? 它们的波函数怎样用单粒子波函数构成?一、1、厄密算符的本征值是实数,本征矢是正交、归一和完备的。2、在无穷远处为零的状
7、态为束缚态;简并态是指一个本征值对应一个以上本征函数的情况;将波函数中坐标变量改变符号,若得到的新函数与原来的波函数相同,则称该波函数具有偶宇称。3、全同玻色子的波函数是对称波函数。两个玻色子组成的全同粒子体系的波函数为:4、宇称算符和坐标的对易关系是:,将其代入测不准关系知,只有当时的状态才可能使和同时具有确定值,由知,波函数满足上述要求,所以是算符和的共同本征函数。5、设和的对易关系,是一个算符或普通的数。以、和依次表示、和在态中的平均值,令 ,则有 ,这个关系式称为测不准关系。时间和能量之间的测不准关系为:二、1、由于,所以算符的本征值是,因为在A表象中,算符的矩阵是对角矩阵,所以,在A
8、表象中算符的矩阵是: 设在A表象中算符的矩阵是,利用得:;由于,所以,;由于是厄密算符,令,(为任意实常数)得在A表象中的矩阵表示式为:2、在A表象中算符的本征方程为:即 和不同时为零的条件是上述方程的系数行列式为零,即 对有:,对有:所以,在A表象中算符的本征值是,本征函数为和3、从A表象到B表象的幺正变换矩阵就是将算符在A表象中的本征函数按列排成的矩阵,即三、解:1、的情况:已知线谐振子的能量本征解为:当时有:,于是时的波函数可写成:,容易验证它是归一化的波函数,于是时的能量取值几率为:,能量取其他值的几率皆为零。能量的平均值为:2、 时体系波函数显然,哈密顿量为守恒量,它的取值几率和平均
9、值不随时间改变,故时体系能量的取值几率和平均值与的结果完全相同。四、解:将矩阵改写成:能量的零级近似为:,能量的一级修正为:,能量的二级修正为:, 所以体系近似到二级的能量为:,先求出属于本征值1、2和3的本征函数分别为:,利用波函数的一级修正公式,可求出波函数的一级修正为:,近似到一级的波函数为:,五、解:由玻色子组成的全同粒子体系,体系的波函数应是对称函数。以表示第个粒子的坐标,根据题设,体系可能的状态有以下四个:(1);(2)(3); (4)一、(20分)已知氢原子在时处于状态其中,为该氢原子的第个能量本征态。求能量及自旋分量的取值概率与平均值,写出时的波函数。 解 已知氢原子的本征值为
10、 , (1)将时的波函数写成矩阵形式 (2)利用归一化条件 (3)于是,归一化后的波函数为 (4)能量的可能取值为,相应的取值几率为 (5)能量平均值为 (6)自旋分量的可能取值为,相应的取值几率为 (7)自旋分量的平均值为 (8) 时的波函数 (9)二. (20分) 质量为的粒子在如下一维势阱中运动若已知该粒子在此势阱中有一个能量的状态,试确定此势阱的宽度。解 对于的情况,三个区域中的波函数分别为 (1)其中, (2)利用波函数再处的连接条件知,。在处,利用波函数及其一阶导数连续的条件 (3)得到 (4)于是有 (5)此即能量满足的超越方程。当时,由于 (6)故 (7)最后得到势阱的宽度 (
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 量子力学 期末 考试 试卷 答案
限制150内