高等数学课件(完整版)详细ppt.ppt
《高等数学课件(完整版)详细ppt.ppt》由会员分享,可在线阅读,更多相关《高等数学课件(完整版)详细ppt.ppt(222页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、问题的提出一、问题的提出1. 1. 计算圆的面积计算圆的面积R正六边形的面积正六边形的面积正十二边形的面积正十二边形的面积1a21aa 正正 形的面积形的面积n23 naaa 21naaaA 21即即 n10310003100310331. 2二、级数的概念二、级数的概念1. 1. 级数的定义级数的定义: : nnnuuuuu3211(常数项常数项)无穷级数无穷级数一般项一般项部分和数列部分和数列 niinnuuuus121级数的部分和级数的部分和,11us ,212uus ,3213uuus ,21nnuuus 2. 2. 级数的收敛与发散级数的收敛与发散: : 当当n无限增大时无限增大
2、时, ,如果级数如果级数 1nnu的部分和的部分和数列数列ns有极限有极限s, , 即即 ssnn lim 则称无穷级数则称无穷级数 1nnu收敛收敛, ,这时极限这时极限s叫做级数叫做级数 1nnu的和的和. .并并写成写成 321uuus如果如果ns没有极限没有极限, ,则称无穷级数则称无穷级数 1nnu发散发散. .即即 常常数数项项级级数数收收敛敛( (发发散散) )nns lim存存在在( (不不存存在在) )余项余项nnssr 21nnuu 1iinu即即 ssn 误差为误差为nr)0lim( nnr无穷级数收敛性举例:无穷级数收敛性举例:KochKoch雪花雪花. .做法:先给定
3、一个正三角形,然后在每条边上对做法:先给定一个正三角形,然后在每条边上对称的产生边长为原边长的称的产生边长为原边长的1/31/3的小正三角形如此的小正三角形如此类推在每条凸边上都做类似的操作,我们就得到类推在每条凸边上都做类似的操作,我们就得到了面积有限而周长无限的图形了面积有限而周长无限的图形“Koch“Koch雪花雪花”观察雪花分形过程观察雪花分形过程第一次分叉:第一次分叉:;913,3411212AAAPP 面积为面积为周长为周长为依次类推依次类推;43, 311 AP面积为面积为周长为周长为设三角形设三角形播放播放, 2 , 1)34(11 nPPnn)91(431121AAAnnnn
4、 1121211)91(43)91(43913AAAAnn , 3 , 2 n周长为周长为面积为面积为)94(31)94(31)94(31311221 nA第第 次分叉:次分叉:n于是有于是有 nnPlim)941311(lim1 AAnn.532)531(1 A结论:雪花的周长是无界的,而面积有界结论:雪花的周长是无界的,而面积有界雪花的面积存在极限(收敛)雪花的面积存在极限(收敛)例例 1 1 讨论等比级数讨论等比级数( (几何级数几何级数) ) nnnaqaqaqaaq20 )0( a的收敛性的收敛性. .解解时时如如果果1 q12 nnaqaqaqasqaqan 1,11qaqqan
5、,1时时当当 q0lim nnqqasnn 1lim,1时时当当 q nnqlim nnslim 收敛收敛 发散发散时时如果如果1 q,1时时当当 q,1时时当当 q nasn 发散发散 aaaa级级数数变变为为不不存存在在nns lim 发散发散 综上综上 发散发散时时当当收敛收敛时时当当,1,10qqaqnn例例 2 2 判判别别无无穷穷级级数数 )12()12(1531311nn 的的收收敛敛性性. .解解)12)(12(1 nnun),121121(21 nn)12()12(1531311 nnsn)121121(21)5131(21)311(21 nn)1211(21limlim n
6、snnn),1211(21 n,21 .21, 和为和为级数收敛级数收敛三、基本性质三、基本性质性性质质 1 1 如如果果级级数数 1nnu收收敛敛, ,则则 1nnku亦亦收收敛敛. .性性质质 2 2 设设两两收收敛敛级级数数 1nnus, , 1nnv, ,则则级级数数 1)(nnnvu收收敛敛, ,其其和和为为 s. .结论结论: : 级数的每一项同乘一个不为零的常数级数的每一项同乘一个不为零的常数, ,敛散性不变敛散性不变. .结论结论: : 收敛级数可以逐项相加与逐项相减收敛级数可以逐项相加与逐项相减. .性性质质 3 3 若若级级数数 1nnu收收敛敛, ,则则 1knnu也也收
7、收敛敛)1( k. .且且其其逆逆亦亦真真. .证明证明 nkkkuuu21nkkknuuu 21,kknss knknnnnss limlimlim 则则.kss 类似地可以证明在级数前面加上有限项不类似地可以证明在级数前面加上有限项不影响级数的敛散性影响级数的敛散性.性性质质 4 4 收收敛敛级级数数加加括括弧弧后后所所成成的的级级数数仍仍然然收收敛敛于于原原来来的的和和. .证明证明 )()(54321uuuuu,21s .limlimssnnmm 则则,52s ,93s ,nms 注意注意收敛级数去括弧后所成的级数不一定收敛收敛级数去括弧后所成的级数不一定收敛. )11()11(例如例
8、如 1111推推论论 如如果果加加括括弧弧后后所所成成的的级级数数发发散散, ,则则原原来来级级数数也也发发散散. . 收敛收敛 发散发散四、收敛的必要条件四、收敛的必要条件级级数数收收敛敛. 0lim nnu证明证明 1nnus,1 nnnssu则则1limlimlim nnnnnnssuss . 0 即即趋于零趋于零它的一般项它的一般项无限增大时无限增大时当当,nun级数收敛的必要条件级数收敛的必要条件: :注意注意1.1.如果级数的一般项不趋于零如果级数的一般项不趋于零, ,则级数发散则级数发散; ; 1)1(4332211nnn例如例如 发散发散2.2.必要条件不充分必要条件不充分.
9、.?, 0lim但级数是否收敛但级数是否收敛有有 nnu n131211例如调和级数例如调和级数讨论讨论nnnssnn2121112 ,212 nn.,s其其和和为为假假设设调调和和级级数数收收敛敛)lim(2nnnss 于是于是ss , 0 .级数发散级数发散)(210 n便有便有.这是不可能的这是不可能的 )21221121()16110191()81716151()4131()211(1mmm8项4项2项2项 项m221每每项项均均大大于于21)1(1 mm项大于项大于即前即前.级级数数发发散散由性质由性质4 4推论推论, ,调和级数发散调和级数发散. .五、小结五、小结1 1. .由由
10、定定义义, ,若若ssn, ,则则级级数数收收敛敛; ;2 2. .当当0lim nnu, ,则则级级数数发发散散; ;3 3. .按按基基本本性性质质. .常数项级数的基本概念常数项级数的基本概念基本审敛法基本审敛法思考题思考题 设设 1nnb与与 1nnc都都收收敛敛,且且nnncab ), 2 , 1( n,能能否否推推出出 1nna收收敛敛?思考题解答思考题解答能能由柯西审敛原理即知由柯西审敛原理即知一、一、 填空题填空题: :1 1、 若若nnan242)12(31 , ,则则 51nna= =_;2 2、 若若nnnna! , ,则则 51nna= =_;3 3、 若级数为若级数为
11、 642422xxxx则则 na_;4 4、 若级数为若级数为 97535432aaaa则则 na_;5 5、 若级数为若级数为 615413211 则当则当 n_时时 na_;当;当 n_时时 na_;6 6、 等比级数等比级数 0nnaq, ,当当_时收敛;当时收敛;当_时发散时发散 . .练习题练习题三、由定义判别级数三、由定义判别级数 )12)(12(1751531311nn的收敛性的收敛性. .四、判别下列级数的收敛性四、判别下列级数的收敛性: :1 1、 n31916131;2 2、 )3121()3121()3121()3121(3322nn;3 3、 nn10121201411
12、0121 . .五、利用柯西收敛原理判别级数五、利用柯西收敛原理判别级数 61514131211的敛散性的敛散性 . .练习题答案练习题答案一、一、1 1、1086429753186427531642531422121 ; 2 2、543215! 54! 43! 32! 21! 1 ; 3 3、)2(6422nxn ; 4 4、12)1(11 nann; 5 5、kkkk21,2 , 12 . 12 ; 6 6、1, 1 qq. .三、收敛三、收敛. . 四、四、1 1、发散;、发散; 2 2、收敛;、收敛; 3 3、发散、发散、 nkknks12)10121( . .五、发散五、发散. .
13、取取np2 观察雪花分形过程观察雪花分形过程第一次分叉:第一次分叉:;913,3411212AAAPP 面积为面积为周长为周长为依次类推依次类推;43, 311 AP面积为面积为周长为周长为设三角形设三角形观察雪花分形过程观察雪花分形过程第一次分叉:第一次分叉:;913,3411212AAAPP 面积为面积为周长为周长为依次类推依次类推;43, 311 AP面积为面积为周长为周长为设三角形设三角形观察雪花分形过程观察雪花分形过程第一次分叉:第一次分叉:;913,3411212AAAPP 面积为面积为周长为周长为依次类推依次类推;43, 311 AP面积为面积为周长为周长为设三角形设三角形观察雪
14、花分形过程观察雪花分形过程第一次分叉:第一次分叉:;913,3411212AAAPP 面积为面积为周长为周长为依次类推依次类推;43, 311 AP面积为面积为周长为周长为设三角形设三角形观察雪花分形过程观察雪花分形过程第一次分叉:第一次分叉:;913,3411212AAAPP 面积为面积为周长为周长为依次类推依次类推;43, 311 AP面积为面积为周长为周长为设三角形设三角形观察雪花分形过程观察雪花分形过程第一次分叉:第一次分叉:;913,3411212AAAPP 面积为面积为周长为周长为依次类推依次类推;43, 311 AP面积为面积为周长为周长为设三角形设三角形一、正项级数及其审敛法一
15、、正项级数及其审敛法1.1.定义定义: :,中各项均有中各项均有如果级数如果级数01 nnnuu这种级数称为正项级数这种级数称为正项级数. . nsss212.2.正项级数收敛的充要条件正项级数收敛的充要条件: :定理定理.有界有界部分和所成的数列部分和所成的数列正项级数收敛正项级数收敛ns部分和数列部分和数列 为单调增加数列为单调增加数列. .ns且且), 2, 1( nvunn, ,若若 1nnv收敛收敛, ,则则 1nnu收敛;收敛;反之,若反之,若 1nnu发散,则发散,则 1nnv发散发散. .证明证明nnuuus 21且且 1)1(nnv设设,nnvu , 即部分和数列有界即部分和
16、数列有界.1收敛收敛 nnu均为正项级数,均为正项级数,和和设设 11nnnnvu3.比较审敛法比较审敛法nvvv 21nns 则则)()2( nsn设设,nnvu 且且 不是有界数列不是有界数列.1发散发散 nnv推推论论: : 若若 1nnu收收敛敛( (发发散散) )且且)(nnnnvkuNnkuv , ,则则 1nnv收收敛敛( (发发散散) ). .定理证毕定理证毕.比较审敛法的不便比较审敛法的不便: 须有参考级数须有参考级数. 例例 1 1 讨讨论论 P P- -级级数数 ppppn14131211的的收收敛敛性性. .)0( p解解, 1 p设设,11nnp .级数发散级数发散则
17、则 P, 1 p设设oyx)1(1 pxyp1234由图可知由图可知 nnppxdxn11pppnns131211 nnppxdxxdx1211 npxdx11)11(1111 pnp111 p,有界有界即即ns.级数收敛级数收敛则则 P 发散发散时时当当收敛收敛时时当当级数级数,1,1ppP重要参考级数重要参考级数: : 几何级数几何级数, P-, P-级数级数, , 调和级数调和级数. .例例 2 2 证明级数证明级数 1)1(1nnn是发散的是发散的.证明证明,11)1(1 nnn,111 nn发散发散而级数而级数.)1(11 nnn发散发散级数级数4.4.比较审敛法的极限形式比较审敛法
18、的极限形式: :设设 1nnu与与 1nnv都是正项级数都是正项级数, , 如果如果则则(1) (1) 当当时时, , 二级数有相同的敛散性二级数有相同的敛散性; ; (2) (2) 当当时,若时,若收敛收敛, , 则则收敛收敛; ; (3) (3) 当当时时, , 若若 1nnv发散发散, , 则则 1nnu发散发散; ;,limlvunnn l00 l l 1nnv 1nnu证明证明lvunnn lim)1(由由, 02 l 对于对于,N ,时时当当Nn 22llvullnn )(232Nnvluvlnnn 即即由比较审敛法的推论由比较审敛法的推论, 得证得证.设设 1nnu为为正正项项级
19、级数数, ,如果如果0lim lnunn ( (或或 nnnulim),),则级数则级数 1nnu发散发散; ;如如果果有有1 p, , 使使得得npnun lim存存在在, ,则则级级数数 1nnu收收敛敛. .5 5. .极极限限审审敛敛法法:例例 3 3 判判定定下下列列级级数数的的敛敛散散性性: :(1) 11sinnn ; (2) 131nnn ;解解)1(nnnn3131lim nnn11sinlim , 1 原级数发散原级数发散.)2(nnn1sinlim nnn311lim , 1 ,311收敛收敛 nn故原级数收敛故原级数收敛.6 6. .比比值值审审敛敛法法( (达达朗朗贝
20、贝尔尔 D DA Al le em mb be er rt t 判判别别法法) ):设设 1nnu是是正正项项级级数数, ,如如果果)(lim1 数数或或nnnuu则则1 时时级级数数收收敛敛; ;1 时时级级数数发发散散; ; 1 时时失失效效. .证明证明,为有限数时为有限数时当当 , 0 对对,N ,时时当当Nn ,1 nnuu有有)(1Nnuunn 即即,1时时当当 ,1时时当当 ,1 取取, 1 r使使,11 NmmNuru,12 NNruu,1223 NNNurruu,111 mNmur收敛收敛而级数而级数,11收敛收敛 NnummNuu收敛收敛, 1 取取, 1 r使使,时时当当
21、Nn ,1nnnuruu . 0lim nnu发散发散比值审敛法的优点比值审敛法的优点: 不必找参考级数不必找参考级数. . 两点注意两点注意:1 1. .当当1 时时比比值值审审敛敛法法失失效效; ;,11发散发散级数级数例例 nn,112收敛收敛级数级数 nn)1( ,232)1(2nnnnnvu 例例,2)1(211收敛收敛级数级数 nnnnnu,)1(2(2)1(211nnnnnauu 但但,61lim2 nna,23lim12 nna.limlim1不存在不存在nnnnnauu 2 2. .条条件件是是充充分分的的, ,而而非非必必要要. .例例 4 4 判判别别下下列列级级数数的的
22、收收敛敛性性:(1) 1!1nn; (2) 110!nnn; (3) 12)12(1nnn.解解)1(!1)!1(11nnuunn 11 n),(0 n.!11收敛收敛故级数故级数 nn),( n)2(!1010)!1(11nnuunnnn 101 n.10!1发散发散故级数故级数 nnn)3()22()12(2)12(limlim1 nnnnuunnnn, 1 比值审敛法失效比值审敛法失效, 改用比较审敛法改用比较审敛法,12)12(12nnn ,112收敛收敛级数级数 nn.)12(211收敛收敛故级数故级数 nnn7.7.根值审敛法根值审敛法 ( (柯西判别法柯西判别法) ):设设 1n
23、nu是是正正项项级级数数, ,如如果果 nnnulim)( 为为数数或或 , ,则则1 时时级级数数收收敛敛; ;,1 ,1 nnn设级数设级数例如例如nnnnnu1 n1 )(0 n级数收敛级数收敛.1 时级数发散时级数发散; ; 1 时失效时失效. .二、交错级数及其审敛法二、交错级数及其审敛法定义定义: : 正、负项相间的级数称为交错级数正、负项相间的级数称为交错级数. . nnnnnnuu 111)1()1(或或莱布尼茨定理莱布尼茨定理 如果交错级数满足条件如果交错级数满足条件: :( () ), 3 , 2 , 1(1 nuunn;(;() )0lim nnu, ,则级数收敛则级数收
24、敛, ,且其和且其和1us , ,其余项其余项nr的绝对值的绝对值1 nnur. .)0( nu其中其中证明证明nnnnuuuuuus212223212)()( 又又)()()(21243212nnnuuuuuus 1u , 01 nnuu.lim12ussnn , 0lim12 nnu,2是单调增加的是单调增加的数列数列ns,2是有界的是有界的数列数列ns)(limlim12212 nnnnnuss, s .,1uss 且且级数收敛于和级数收敛于和),(21 nnnuur余项余项,21 nnnuur满足收敛的两个条件满足收敛的两个条件,.1 nnur定理证毕定理证毕.例例 5 5 判判别别级
25、级数数 21)1(nnnn的的收收敛敛性性. .解解2)1(2)1()1( xxxxx)2(0 x,1单调递减单调递减故函数故函数 xx,1 nnuu1limlim nnunnn又又. 0 原级数收敛原级数收敛.三、绝对收敛与条件收敛三、绝对收敛与条件收敛定义定义: : 正项和负项任意出现的级数称为任意项级数正项和负项任意出现的级数称为任意项级数. .定理定理 若若 1nnu收敛收敛, ,则则 1nnu收敛收敛. .证明证明), 2 , 1()(21 nuuvnnn令令, 0 nv显然显然,nnuv 且且,1收敛收敛 nnv),2(11 nnnnnuvu又又 1nnu收敛收敛.上定理的作用:上
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 课件 完整版 详细 ppt
限制150内