二项式定理与杨辉三角ppt课件.ppt
《二项式定理与杨辉三角ppt课件.ppt》由会员分享,可在线阅读,更多相关《二项式定理与杨辉三角ppt课件.ppt(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二项展开式的通项二项展开式的通项: 1kT二项式系数二项式系数:), 2 , 1 , 0(nkCkn 项数:项数:次数:次数:共有共有n1项项 各项的次数都等于各项的次数都等于n, kknknbaC )()(*110NnbCbaCbaCaCbannnkknknnnnnn 字母字母a按按降幂降幂排列排列,次数由次数由n递减到递减到0 , 字母字母b按按升幂升幂排列排列,次数由次数由0递增到递增到n .二项式定理二项式定理 ?)1( nx)()(*110NnbCbaCbaCaCbannnkknknnnnnn ?)( nbannnkknknnnnnbCbaCbaCaC)()()(110 01kknn
2、nnnnCC xC xC x二项式定理二项式定理 011()rnnnn nnnn r rnna bCaCa bbCCa b定理定理剖剖 析析1.二项式系数规律:二项式系数规律:nn2n1n0nCCCC、 2.指数规律:指数规律:(1)各项的次数均为)各项的次数均为n;(2)二项展开式中)二项展开式中a的次数由的次数由n降到降到0, b的次数由的次数由0升到升到n.3.项数规律:项数规律: 二项展开式共有二项展开式共有n+1个项个项 4.若若a=2, b=x :404132223134444444(2)2222xCCx CxCxC x则称某一项除则称某一项除X外的代数式为外的代数式为项的系数项的
3、系数如:如:第二项的系数第二项的系数为:为: ,二项式系数为:,二项式系数为:134232C144C化简化简: (x-1)4+4(x-1)3+6(x-1)2+4(x-1)+1.0413223444444(1)(1)(1)(1)C xC xC xC xC 原原式式4(1) 1x 4x 变式练习变式练习计算计算(a+b)n展开式的二项式系数并填入下表展开式的二项式系数并填入下表 n(a+b)n展开式的二项式系数展开式的二项式系数12345616152015611510105114641133112111对称性对称性(a+b)1(a+b)2(a+b)3(a+b)4(a+b)5(a+b)6议一议议一议
4、1 1)请看系数有没有明显的规律?)请看系数有没有明显的规律?2 2)上下两行有什么关系吗?上下两行有什么关系吗? 3 3)根据这两条规律,大家能写出下面的系数吗根据这两条规律,大家能写出下面的系数吗?每行两端都是每行两端都是1 Cn0= Cnn=1从第二行起,每行除从第二行起,每行除1以外的每一个数都等以外的每一个数都等于它肩上的两个数的和于它肩上的两个数的和 Cn+1m= Cnm + Cnm-1(a+b)1(a+b)2(a+b)3(a+b)4(a+b)5(a+b)6+第第5行行 1 5 5 1第第0行行1第第1行行 1 1第第2行行 1 2 1第第3行行 1 3 3 1第第4行行 1 4
5、1第第6行行 1 6 15 6 1第第n-1行行 111 nC21 nC11 rnCrnC1 21 nnC第第n行行 11nC2nC1 nnC 1515=5+102020=10+1010=6+41010=6+41066=3+34=1+34rnrnrnCCC111 rnCrnrnrnCCC111 rnnrnCC 1 1)表中每个数都是组合数,第)表中每个数都是组合数,第n n行的第行的第r+1r+1个数是个数是 2 2)三角形的两条斜边上都是数字)三角形的两条斜边上都是数字1 1,而其余,而其余的数都等于它肩上的两个数字相加,也就是的数都等于它肩上的两个数字相加,也就是 3 3)杨辉三角具有对称
6、性)杨辉三角具有对称性 4 4)杨辉三角的第)杨辉三角的第n n行是二项式(行是二项式(a+ba+b)n n展开展开式的二项式系数即式的二项式系数即)!(!rnrnCrn nnnrrnrnnnnnnbCbaCbaCaCba 1110)( 展开式的二项式展开式的二项式系数依次是:系数依次是: nba)( nnnnnC,C,C,C210 从函数角度看,从函数角度看, 可看可看成是以成是以r为自变量的函数为自变量的函数 , ,其定义域是:其定义域是: rnC)(rfn, 2 , 1 , 0 当当 时,其图象是右时,其图象是右图中的图中的7个孤立点个孤立点6n对称性对称性 与首末两端与首末两端“等距离
7、等距离”的两个二项式系数相等的两个二项式系数相等 这一性质可直接由公式这一性质可直接由公式 得到得到mnnmn CC图象的对称轴:图象的对称轴:2nr 2、若(、若(a+b)n的展开式中,第三项的二项的展开式中,第三项的二项式系数与第七项的二项式系数相等,式系数与第七项的二项式系数相等,知识对接测查知识对接测查11、在、在(ab)展开式中,与倒数第三项二展开式中,与倒数第三项二项式系数相等是项式系数相等是( )A 第项第项 B 第项第项 C 第项第项 D 第项第项则则n=_B8增减性与最大值增减性与最大值 112111()()()CC()!kknnn nnnknkkkk 由于由于:所以所以 相
8、对于相对于 的增减情况由的增减情况由 决定决定knC1Cknkkn1由由:2111nkkkn 即二项式系数即二项式系数前前半部分半部分是是逐渐增大逐渐增大的,由对称性可知它的的,由对称性可知它的后后半部分是半部分是逐逐渐减小渐减小的,且的,且中间项取得最大值中间项取得最大值。21nk 可知,当可知,当 时,时, 因此因此, ,当当n为偶数时为偶数时, ,中间一项的二项式中间一项的二项式2Cnn系数系数 取得最大值;取得最大值; 当当n为奇数时为奇数时, ,中间两项的二项式系数中间两项的二项式系数 12Cnn 12Cnn 相等,且同时取得最大值。相等,且同时取得最大值。增减性与最大值增减性与最大
9、值 各二项式系数的和各二项式系数的和 在二项式定理中,令在二项式定理中,令 ,则:,则: 1bannnnnn2CCCC210 这就是说,这就是说, 的展开式的各二项式系的展开式的各二项式系数的和等于数的和等于:nba)( n2同时由于同时由于 ,上式还可以写成:,上式还可以写成:1C0n12CCCC321nnnnnn这是组合总数公式这是组合总数公式 例例 证明在证明在(a+b)n展开式中,奇数项的二项式系展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和。数的和等于偶数项的二项式系数的和。在二项式定理中,令在二项式定理中,令 ,则:,则: 1, 1 bannnnnnnnCCCCC) 1
10、(113210 nnnrrnrnnnnnnbCbaCbaCaCba 110)()()(03120 nnnnCCCC证明:证明:1222 nn3 3n n1 1n n2 2n n0 0n nC CC CC CC C 中世纪意大利数学家中世纪意大利数学家斐波那契斐波那契的传的传世之作世之作算术之法算术之法中提出了一个饶有中提出了一个饶有趣味的问题:趣味的问题:假定一对刚出生的兔子一假定一对刚出生的兔子一个月就能长成大兔子,再过一个月就开个月就能长成大兔子,再过一个月就开始生下一对小兔子,并且以后每个月都始生下一对小兔子,并且以后每个月都生一对小兔子设所生一对兔子均为一生一对小兔子设所生一对兔子均为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二项式 定理 三角 ppt 课件
限制150内