第07讲_正方形的性质与判定(教师版)A4-精品文档资料整理.docx
《第07讲_正方形的性质与判定(教师版)A4-精品文档资料整理.docx》由会员分享,可在线阅读,更多相关《第07讲_正方形的性质与判定(教师版)A4-精品文档资料整理.docx(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学 高斯教育学科教师辅导讲义学员姓名:年 级:辅导科目:学科教师:五块石1上课时间授课主题第07讲_正方形的性质与判定知识图谱错题回顾顾题回顾正方形知识精讲一正方形的定义有一组邻边相等、一个内角是的平行四边形叫做正方形二正方形的性质1正方形的四条边都相等,四个角都是直角;2正方形既是矩形,又是菱形,它既有矩形的性质,又有菱形的性质3正方形是轴对称图形,对称轴有4条三正方形的判定1有一组邻边相等的矩形是正方形;2有一个角是直角的菱形是正方形;3对角线互相垂直的矩形是正方形;4对角线相等的菱形是正方形;5对角线互相垂直、平分且相等的四边形是正方形;6四条边相等且四个角是直角的四边形是正方形四
2、弦图模型如图1,RtDCERtCAF;如图2,RtBAERtCBF三点剖析一考点:1正方形的性质;2正方形的判定;3弦图模型二重难点:正方形性质的应用和判定;弦图模型三易错点:正方形、矩形、菱形性质与判定的区别题模精讲题模一:性质例1.1.1如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E若CBF=20,则AED等于度【答案】65【解析】正方形ABCD,AB=AD,BAE=DAE,在ABE与ADE中,ABEADE(SAS),AEB=AED,ABE=ADE,CBF=20,ABE=70,AED=AEB=1804570=65,例1.1.2如图,点E在正方形ABCD的对角线AC上,且EC
3、=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()Aa2Ba2Ca2Da2【答案】D【解析】过E作EPBC于点P,EQCD于点Q,四边形ABCD是正方形,BCD=90,又EPM=EQN=90,PEQ=90,PEM+MEQ=90,三角形FEG是直角三角形,NEF=NEQ+MEQ=90,PEM=NEQ,AC是BCD的角平分线,EPC=EQC=90,EP=EQ,四边形PCQE是正方形,在EPM和EQN中,EPMEQN(ASA)SEQN=SEPM,四边形EMCN的面积等于正方形PCQE的面积,正方形ABCD的边长为a
4、,AC=a,EC=2AE,EC=a,EP=PC=a,正方形PCQE的面积=aa=a2,四边形EMCN的面积=a2,故选:D例1.1.3如图,在边长为6的正方形ABCD中,E是边CD的中点,将ADE沿AE对折至AFE,延长EF交边BC于点G,连接AG(1)求证:ABGAFG;(2)求BG的长【答案】(1)证明见解析;(2)2【解析】(1)在正方形ABCD中,AD=AB=BC=CD,D=B=BCD=90,将ADE沿AE对折至AFE,AD=AF,DE=EF,D=AFE=90,AB=AF,B=AFG=90,又AG=AG,在RtABG和RtAFG中,ABGAFG(HL);(2)ABGAFG,BG=FG,
5、设BG=FG=x,则GC=6x,E为CD的中点,CE=EF=DE=3,EG=3+x,在RtCEG中,32+(6x)2=(3+x)2,解得x=2,BG=2题模二:判定例1.2.1已知四边形ABCD是平行四边形,再从AB=BC,ABC=90,AC=BD,ACBD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A选B选C选D选【答案】B【解析】本题考查了正方形的判定方法:先判定四边形是矩形,再判定这个矩形有一组邻边相等;先判定四边形是菱形,再判定这个矩形有一个角为直角还可以先判定四边形是平行四边形,再用1或2进行判定要判定是正方形,则需能判定它既是菱形
6、又是矩形A、由得有一组邻边相等的平行四边形是菱形,由得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由得有一个角是直角的平行四边形是矩形,由得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由得有一组邻边相等的平行四边形是菱形,由得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由得有一个角是直角的平行四边形是矩形,由得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意故选:B例1.2.2如图,是的垂直平分线,交
7、于点,过点作,垂足分别为、(1)求证:;(2)若,求证:四边形是正方形【答案】见解析【解析】(1)是的垂直平分线,又(2),即,四边形AEMF是矩形,又CAB=DAB,MEAC,MFAD,矩形是正方形题模三:弦图例1.3.1如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BFa于点F,DEa于点E,若DE=8,BF=5,则EF的长为_【答案】13【解析】本题考查了全等三角形的判定、正方形的性质实际上,此题就是将EF的长度转化为与已知长度的线段DE和BF数量关系根据正方形的性质、直角三角形两个锐角互余以及等量代换可以证得AFBAED;然后由全等三角形的对应边相等推知AF=D
8、E、BF=AE,所以EF=AF+AE=13ABCD是正方形(已知),AB=AD,ABC=BAD=90;又FAB+FBA=FAB+EAD=90,FBA=EAD(等量代换);BFa于点F,DEa于点E,在RtAFB和RtAED中,AFBAED(AAS),AF=DE=8,BF=AE=5(全等三角形的对应边相等),EF=AF+AE=DE+BF=8+5=13故答案为:13随堂练习随练1.1如图,在正方形ABCD的外侧,作等边ADE,则BED的度数是_.【答案】45【解析】四边形ABCD是正方形,AB=AD,BAD=90等边三角形ADE,AD=AE,DAE=AED=60BAE=BAD+DAE=90+60=
9、150,AB=AE,AEB=ABE=(180BAE)2=15,BED=DAEAEB=6015=45.随练1.2如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为_ABCD3【答案】B【解析】此题考查了折叠的性质、正方形的性质以及勾股定理此题难度适中,注意掌握数形结合思想与方程思想的应用正方形纸片ABCD的边长为3,C=90,BC=CD=3,根据折叠的性质得:EG=BE=1,GF=DF,设DF=x,则EF=EG+GF=1+x,FC=DC-DF=3-x,EC=BC-BE=3-1=2,在RtEFC中
10、,EF2=EC2+FC2,即(x+1)2=22+(3-x)2,解得:x=,DF=,EF=1+=故选B随练1.3如图,矩形中,点从向以每秒个单位的速度运动,以为一边在的右下方作正方形,同时垂直于的直线也从向D以每秒个单位的速度运动,当经过_秒时,直线和正方形开始有公共点?【答案】【解析】过点作于点,在正方形中,在和中,当直线和正方形开始有公共点时:,解得:故当经过秒时直线和正方形开始有公共点随练1.4已知:如图,正方形ABCD,E,F分别为DC,BC中点求证:ABFCED【答案】见解析【解析】该题考察的是正方形 四边形ABCD为正方形,2分E、F为DC、BC中点, 3分 在ADE和ABF中,AD
11、EABF(SAS) 4分 5分随练1.5如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分ACD交BD于点E,则DE=_【答案】-1 【解析】过E作EFDC于F,四边形ABCD是正方形,ACBD,CE平分ACD交BD于点E,EO=EF,在RtCOE和RtCFE中,RtCOERtCFE(HL),CO=FC,正方形ABCD的边长为1,AC=,CO=AC=,CF=CO=,EF=DF=DC-CF=1-,DE=-1,另法:因为四边形ABCD是正方形,ACB=45=DBC=DAC,CE平分ACD交BD于点E,ACE=DCE=22.5,BCE=45+22.5=67.5,CBE=45,BEC=67.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 07 正方形 性质 判定 教师版 A4 精品 文档 资料 整理
限制150内