《级数习题解答(1-6节)-精品文档资料整理.docx》由会员分享,可在线阅读,更多相关《级数习题解答(1-6节)-精品文档资料整理.docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、11.11. 2 , , 3. 假设级数 收敛,其和为S,则有 且,于是有,但另一方向: 矛盾 3. 4. 3 n=131an,a0=3n=1(1a)n当01a1时原级数发散,a1时级数n=131an收敛,0a1时发散.(4) n=1(13n+1n)=n=113n+n=11n而n=11n发散,n=113n收敛,故原级数发散.(5)an=(-1)n 2n3n=(-23)n公比q=-231n=1(-1)n2n3n=-231+23=-35.6 n=112n+13n=n=112n+n=113n=121-12+131-13=1+12=32.11.21. 而 而 收敛 而发散 而 发散 而 而 (7)(8
2、)2.(1)limnUn+1Un=limn2n+1n+13n+12nn3n=limn23nn+1=231n=12nn3n收敛(2)(3)=limnn+1n212=121 (sin2n+12n+1.n)原级数收敛(4)3.(1)(2)(3)(4)4.(1)un=n2n而un+1un=n+12n0) 则fx=-1ln(1+x)211+x0)fx为单调递减1lnn+11lnn+2 limn1n+1=0n=0(-1)n1ln(n+1)收敛又lnn+11n+1而n=01n+1发散n=01ln(n+1)发散(-1)n1ln(n+1)条件收敛(4)sinn3n31n3=1n32 (p=32) 而n=01n3
3、收敛sinn3n3绝对收敛5. 证明:(1)n=0un收敛 limnun=0又un0 N0 s.t 当nN时,有00,s.t 当nN时 有0un1 则un2un由比较判别法 可得n=0un2收敛6.证明:UnVn=UnVnUn2+Vn22n=1Un条件收敛,n=1Un收敛.n=1Vn绝对收敛,n=1Vn收敛.由习题52可得n=1Un2收敛,n=1Vn2收敛n=0Un2+Vn22收敛,用比较审数法,可知n=1UnVn收敛.从而n=1UnVn绝对收敛.11.31.(1)=limnan+1an=limnn+1n=limnn+1n=1R=1=1当x=1时,原级数变为n=1n1n=n=1n,此级数发散当
4、x=-1时,原级数变为n=1(-1)nn,此级数发散,故原级数的收敛域为(-1,1)(2)当收敛域为(3)R=1=1当x=1时,原级数化为,此级数收敛当x=-1时,原级数化为,此级数收敛故收敛域为(4)原级数为缺项级数,设Unx=x2n+12n+1 p=limnUn+1xUnx=limnx2n+32n+32n+1x2n+1=x2根据比值审敛法,有:当x21,即x1,即x1时,级数发散;当x=1时,原级数化为n=1(-1)n12n+1,为交错级数,由上节知该交错级数收敛。当X=-1时,原级数化为n=1-(-1)n2n+1,仍然收敛.原级数收敛域为-1,1.(6)方法同(4)=limn|Un+1(
5、x)Un(x)|=limn2n+32n+1. |x|2n+3.2n(2n+1)|x|2n+1=12|x|2当12|x|21,即|x|2时,发散.当|x|=2时,原级数化为n=122n+1,发散.当|x|=-2时,原级数化为n=1-22n+1,发散.原级数的收敛域为(-2,2)11.41.解:(1)(2)(3)(4)而 (-1x1) (-1x1)(6)而 (-1x1) (例5结论).(-1x1)(6)(1+x) ln(1+x)=ln(1+x)+x ln(1+x)=n=1(-1)n-1xnn +x n=1(-1)n-1xnn =n=1(-1)n-1xnn +n=1(-1)n-1xn+1n =n=1
6、(-1)n-1xnn +n=2(-1)nxnn-1 =x +n=2(-1)n-1n+(-1)nn-1 xn=x+n=2(-1)nxnn(n-1) x(-1,1 (7)1x2+4x-5=1x+5x-1=161x-1-1x+5而1x-1=-11-x=-n=1xn (-1x1)1x+5=1511+x5=15n=1(-1)n(x5)n (-1x51与-5x5)1x2+4x-5=16(-n=1xn+n=1-1nxn5n+1) =16n=1-1+-1n5n+1xn (-1x1)(8)e-x=n=1(-1)nn!xnxe-x=n=1(-1)nn!xn+1 (-x+)解:cosx=cos3+x-3 =cos3
7、cosx-3-sin3sin(x-3) =12cosx-3-32sin(x-3)而cosx-3=1-12!x-32+14!x-34+-1nx-32n2n!+ xRsinx-3=x-3-13!x-32+-1n-1x-32n-12n-1!+ xRcosx=12n=1(-1)n(x-3)2n(2n)!-32n=1(-1)n-1(x-3)2n-1(2n-1)!3.解:1x=1x+2-2=-1211-x+22而11-x+22=n=1x+22n (-1x+221)1x=-12n=1x+22n=n=1x+2n2n+1 (0x4)4.解:1x2+3x+2=1x+1-1x+2=1511+x-45-1611+x-
8、4611+x-45=n=0(-1)n(x-4)n5n (-1x-451)11+x-46=n=0(-1)n(x-4)n6n (-1x-461)1x2+3x+2=15n=0(-1)n(x-4)n5n-16n=0(-1)n(x-4)n6n=n=0(-1)n(15n-16n)x-4n (-1x115117)=113*212*11-1212=413*4096*3=4159744=1399360.0001取ln32(12+13*123+15*1 25+17*1 27+19*1 29+111*1 211)考虑有误差计算时应取5位小数13*18=1240.0416 17*27=17*128=18960.001
9、11 19*29=146080.00022 111*211=12255280.00004ln32(0.5+0.04167+0.00625+0.00111+0.00022+0.00004)1.0986(2)ex=n=0xnn! xRe=n=012nn!=1+12+12!*(12)2+13!*(12)3+rn=1n+1!*2n+1 +1n+1!*2n+2+=1n+1!*2n+1(1+1n+2*12+1n+3n+1*122+) 1n+1!*2n+1(1+12+122+)=1n+1!*2n+1*11-12=1n+1!*2nr516125=172*32=0.00004r n=5 .计算得e=1+12+1
10、2!*14+13!*18+14!*116+15!*132 =1+0.5+18+148+1384+1120*32 =1.5625+0.02083+0.002604+0.00026 1.64892.(1)解:11+x3=1-x3+x6-x9+-1n(x3)n+01211+x3dx=0121-x3+x6-x9+-1nx3n+dx=(x-14x4+17x7-110x10+-1n+1x3n+1+)|012=12-14(12)4+17(12)7-110(12)10+113(12)13-上式右边为交错级数,有r3u4=1101210=110240110000故取3项,并在计算时取5位小数,可得01211+x
11、3dx12-14(12)4+17(12)7=12-(12)6+17(12)70.5-0.01563+0.001110.4855(2):(arccotx)=-11+x2=-1-x2+x4-x6+-1nx2n+ =-1+x2-x4+x6+-1n+1x2n+arccotx=-x+13x3-15x5+17x7+-1n+12n+1x2n+1+ (-1x1)00.5arccotxxdx=00.5(-1+13x2-15x4+17x6+-1n2n+1x2n+1+)dx=-x+193XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
12、XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
13、XXXXXXXXXXXXXXXXx3-125x5+149x7+|00.5=-12+19123-125125+149127+上式右端为交错级数,有 r4U5=181*290.0000210-4取4项,并在计算时取5位小数,可得00.5arccotxxdx-12+19*123-125*125+147127 -0.5+0.01389-0.00125+0.00017 -0.48723.解:由欧拉公式eix=cosx+i*sinx 知 sinx=Imeixexsinx=exImeix=Imexeix =Ime(i+1)x而e(i+1)x=n=11n!(1+i)nxn=n=02(cos4+isin4)n*
14、xnn! =n=0(cosn4+isinn4)2n2*xnn! xRex*sinx=Imeix=n=0sinn4*xnn!*2n2 xR11.61.解:(1)a0=1-(2x+1)dx=1x2+x-=2 an=1-(2x+1)cosnxdx=1n-(2x+1)dsinx =1n2x+1sinx-sinxd2x+1 =1n0-2-sinxdx=0(n=1,2,) bn=1-fxsinxdx=1-(2x+1)sinxdx =-1nx-(2x+1)dcosnx =-1nx(2x+1)cosx-cosxd2x+1 =-1nx(-1)n4-2n-cosxdx =(-1)n+14n+4n2sinx0=(-
15、1)n+14n f(x)满足收敛条件且在(-,+)上连续, fx=2x+1=1+n=1(-1)n+14nsinx(2)fx=e2x(-x) a0=1-e2xdx=e2-e-22 an=1-e2xcosnxdx=12-cosnxde2x=12e2xcosnx-e2xdcosnx=12-1ne2-e-2+12-e2xsinxdx= = 同理,可计算得 故 (3)bn=1-fxsinnxdx=1-0exsinnxdx+0sinnxdx=1-0sinnxdex-1ncosnx0=1-n1-1ne-1+n2-1n-1n-1 n=1,2.fx=1+-e-2+11-1ne-1+n2cosnx+-n1-1ne
16、-1+n2+1-1nnsinnx=ex-x010x12(e-+1)x=4 a0=1-fxdx=1-00dx+0xdx=2an=1-fxcosnxdx=1-00cosnxdx+0xcosnxdx=1.1n0xdsinnx=1nxsinnx|0-0sinnxdx=1n2cosn|0=1n2(-1)n-1=(-1)n-1n2bn=1-fxsinnxdx=1-00sinnxdx+0xsinnxdx=-1n0xdcosnx=-1nxcosnx|0-0cosnxdx=-1n-1n-1n0dsinnx=-(-1)nn2. 解:(1)为奇数, 而(2) 2.解:为将fx=cosx2展开成正弦级数,需对原函数进
17、行奇延拓.设(x)cosx2 0x-cosx2 -x00 x=0. 则(x)在-,上为奇函数an=0 (n=0,1,2,)bn=20fxsinnxdx=20cosx2sinnxdx=102cosx2sinnxdx=10sinn-12x+sinn+12xdx=1-1n-12cosn-12x-1n+12cosn+12x0=1-22n-1cosn-12-1-22n+1(cosn+12-1)=122n-1+22n+1-22n-1cosn-12-22n+1cos(n+12)=18n4n2-1 (n=1,2,)fx=n=1bnsinnx=8n=1n4n2-1sinnx=cosx2 0x0 x=0 3.解:
18、(1)展开正弦函数令x=3x2 x0,-3x2 x(-,0)是fx的奇延拓,又(x)是x的周期连续函数,则(x)满是收敛定理的条件,而在x=2k+1 (kz)处间断,又在(0,上(x)fx,故它的傅里时级数在0,上收敛于fx.an=0 (n=0,1,2,)bn=203x2sinnxdx=6-1n0x2dcosnx=-6nx2dcosnx0-0cosnx2xdx=6-1n+12n+2-1nn3-2n3 (n=1,2,)=6-1n2n3-2n-2n3 (n=1,2,)fx=6n=1-1n2n3-2n-2n3sinnx,x0,).(2)展开成余弦函数.令x=3x2,x=-,是fx的偶函数,又(x)是
19、x的周期连续函数,则(x)满足收敛定理的条件,且处处连续,又在0,上(x)fx,故它的傅里时级数在0,上收敛于fx.bn=0 (n=1,2,)a0=203x2dx=2x30=23=22an=203x2cosnxdx=12n2(-1)n (n=1,2,)fx=2+12n=1(-1)nn2cosnx x0,.4.解:(1) fx的半周期l=2a0=12-22 fxdx=12-20 0dx+02 1dx=1an=12-22 fxcosnx2dx=1202 1cosnx2dx=0 (n=1,2,)因f(x)满足收敛定理的条件,且处处连续。fx=53+42n=1(-1)nn2cosnx, xR5.解:(
20、1)令x=4 0x 0 x=0 -4 -x0 是f(x)的奇延拓,又(x)是(x)的周期延拓函数,则(x)满足收敛定理的条件,而x=k(kZ)处间断,又在0,上x=fx ,故它的傅里叶 级数在0,上收敛于f(x). an=0 (n=0,1,2,) bn=204sinnxdx=120sinnxdx =12-1ncosnx0=-12n-1n-1 (n=1,2,) fx=12n=11n(-1n-1)sinnx (-1)n-1=-2 n=2k-10 n=2k (k=1,2,) fx=k=112k-1sin2k-1x=4(2)当x=2时,sin(2x-1)2=sink-2=1 k=1,3,5-1 k=2
21、,4,.k=1sin(2k-1)22k-1=1-13+15-17+=46.解:作x=2-x 0x2+x -x0 则x是f(x)的偶延拓,令(x)是x的周期延拓,则(x)满足收敛定理的条件,处处连续,在0,上,(x)f(x),因此(x)的傅里叶级数在0,上收敛于f(x). 而a0=20(2-x)dx=0 bn=0 (n=1,2,) an=202-xcosnxdx=2n02-xdsinx =2n2-xsinx0-0sinxd(2-x) =2n0sinxdx=-2n2(cosnx0)= -2n2(-1)n-1) =4(2k-1)2 n=2k-10 n=2k (k=1,2,)fx=4k=112k-12cos(2k-1x=2-x x0,当x=0时,上式化为4k=112k-12=2k=112k-12=28bn=12-22f(x)sinnx2dx=1202sinnx2dx =-2n-1n-1 (n=1,2,)因f(x)满足收敛定理的条件,其间断点为x=2k(kZ) 故有:f(x)=12+2n=1(-1)n+1n+1n)sinnx2 xR(2k,kZ)(2).f(x)是半周期=1的偶函数,故 bn=0. n=1,2, a0=-111+x2dx=201(1+x2)dx=103an=201(1+x2)cosnxdx =21n01(1+x2)dsinnx=-1n*4n2225
限制150内