人教版初中数学八年级下册18.2.1《矩形的性质》教案.doc
《人教版初中数学八年级下册18.2.1《矩形的性质》教案.doc》由会员分享,可在线阅读,更多相关《人教版初中数学八年级下册18.2.1《矩形的性质》教案.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、矩形的性质教案 学习目标知识与技能:探索并掌握矩形的有关性质,领会矩形的内涵过程与方法:经历探索矩形有关性质的过程,在直观操作活动中学会简单说理,发展初步的合情推理能力和主动探究习惯,逐步掌握说理的基本方法 情感态度与价值观:形成良好的几何感知,体会几何学的逻辑内涵,发展思维学习难点理解和掌握矩形的性质,发展合情推理能力和主动探究习惯教学过程 一、回顾 1平行四边形有哪些特征? 2有几种方法可以识别四边形是平行四边形? 3平行四边形是中心对称图形吗?它的对称中心是什么样的点?平行四边形是轴对称图形吗?如果是,它的对称轴是怎样的直线?如果不是,请说明理由 二、创设问题情境,引入新课 1教师出示教
2、具:“一个活动的平行四边形木框”,用两根橡皮筋分别套在相对的两个顶点上拉动一对不相邻的顶点A、C,立即改变平行四边形的形状,如图所示 学生思考如下问题: (1)无论如何变化,四边形ABCD还是平行四边形吗? (2)随着的变化,两条对角线长度有没有变化? 学生凭直觉可以很快地回答上述问题 随着由锐角变成钝角时,过顶角的对角线由长变短,而另一条对角线由短变长 当是锐角时,学生可以用刻度尺量出两条对角线的长度,你可判别它们数量之间的关系吗? 当是钝角时,学生也可以用同样办法,得到两对角线的数量关系 (3)当为直角时,这个时候平行四边形就变成一个特殊的平行四边形矩形 这就是你们以前学过的长方形 教师根
3、据学生的回答板书:矩形 这就是我们今天着手研究的一个课题 (4)那怎样的平行四边形是矩形呢? 2同学回答,老师板书:有一个内角为直角的平行四边形是矩形? 如果人家问怎样的四边形是矩形呢? 那就要说四个内角都是直角(或三个内角是直角)的四边形是矩形 大家想一想矩形是平行四边形吗?是) 那么矩形就具有平行四边形的一切特征 即矩形是中心对称图形;对边分别平行;两组对边分别相等;两组对角分别相等;对角线互相平分 3矩形除了以上特征外,还有它的特有的性质吗? 学生思考以下问题: (1)上面的活动架当为直角时,它们的对角线有何关系? (2)矩形是轴对称图形吗?如果是,它的对称轴是怎样的直线?如果不是请说明
4、理由 (3)说出日常生活中的矩形图象 4让我们一起来归纳矩形的性质,并板书: (1)矩形具有平行四边形的一切性质 (2)矩形是轴对称图形 (3)矩形的对角线相等 (4)矩形的四个角都是直角 三、讲解例题例1 矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形周长的和为86cm,对角线长为13cm,那么矩形的周长是多少? 学生思考交流后 师生共同分析:要求矩形ABCD的周长,就必要求出AB、BC、CD、AD的长度,由于AB=DC,AD=BC,那么只要求出AB、BC或CD、AD即可 而矩形的对角线相等且互相平分,又对角线AC=13cm,所以OA=OB=OC=OD=cm=6.5cm 这样通过
5、四个小三角形的周长和得到答案 点拨:上面从求AB、BC、CD、AD的长度来考虑是一种常见的方法,这里是很难实现的与上次讲述的从整体考虑也是一种好方法,即求AB+BC+CD+AD的值,本题应该从这方面入手 解:因为AOB、BOC、COD、AOD的周长的和为86cm,四边形ABCD是矩形, 所以AC=BD=13cm,AO=OB=OC=OD 则AO+OB+AB+BO+OC+BC+CO+CD+OD+AO+OD+AD=86(cm) 即AB+BC+CD+AD=86-2AC-2BD=86-213-213=34(cm) 所以矩形ABCD的周长为34cm练一练1.矩形的定义中有两个条件:一是_,二是_。2.有一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矩形的性质 人教版 初中 数学 年级 下册 18.2 矩形 性质 教案
限制150内