二次根式的概念与性质.doc
《二次根式的概念与性质.doc》由会员分享,可在线阅读,更多相关《二次根式的概念与性质.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次根式的概念与性质编稿:庄永春审稿:邵剑英责编:张杨一、目标认知1.学习目标:理解二次根式的概念,了解被开方数是非负数的理由;理解并掌握下列结论:,并利用它们进行计算和化简2.重点:;,及其运用3.难点:利用,解决具体问题.二、知识要点梳理知识点一:二次根式的概念一般地,我们把形如(a0)的式子叫做二次根式,“”称为二次根号要点诠释:二次根式的两个要素:根指数为2;被开方数为非负数.知识点二:二次根式的性质1.;2.;3.;4. 积的算术平方根的性质:;5. 商的算术平方根的性质:.要点诠释:二次根式 (a0)的值是非负数,其性质可以正用亦可逆用,正用时去掉根号起到化简的作用;逆用时可以把一
2、个非负数写成完全平方的形式,有利于在实数范围内进行因式分解.知识点三:代数式形如5,a,a+b,ab,x3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式(algebraic expression).三、规律方法指导1.如何判断一个式子是否是二次根式?(1)必须含有二次根号,即根指数为2;(2)被开方数可以是数也可以是代数式但必须是非负的,否则在实数范围内无意义.2.如何确定二次根式在实数范围内有意义?要使二次根式在实数范围内有意义必须满足被开方数为非负数.要确定被开方数中所含字母的取值范围,可根据题意列出不等式,
3、通过解不等式确定字母的取值范围.当二次根式作为分母时要注意分母不能为零.经典例题透析类型一:二次根式的概念1、下列式子,哪些是二次根式,哪些不是二次根式:、(x0)、(x0,y0)思路点拨:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0解:二次根式有:、(x0)、(x0,y0);不是二次根式的有:、2、当x是多少时,在实数范围内有意义?思路点拨:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-10,才能有意义解:由3x-10,得:x当x时,在实数范围内有意义总结升华:要使二次根式在实数范围内有意义,必须满足被开方数是非负数举一反三【变式1】x 是怎样的实数时
4、,下列各式实数范围内有意义?(1); (2);解:(1)由0,解得:x取任意实数 当x取任意实数时,二次根式在实数范围内都有意义.(2)由x-10,且x-10,解得:x1 当x1时,二次根式在实数范围内都有意义.【变式2】当x是多少时,+在实数范围内有意义?思路点拨:要使+在实数范围内有意义, 必须同时满足中的2x+30和中的x+10解:依题意,得 由得:x- 由得:x-1 当x-且x-1时,+在实数范围内有意义类型二:二次根式的性质3、计算:(1) (2) (3) (4) (5)(b0)(6)思路点拨:我们可以直接利用(a0)的结论解题解:(1) (2)=;(3);(4)=;(5);(6)举
5、一反三【变式1】计算:(1);(2);(3); (4).思路点拨:(1)因为x0,所以x+10; (2)a20; (3)a2+2a+1=(a+1)20;(4)4x2-12x+9=(2x)2-22x3+32=(2x-3)20 所以上面的4题都可以运用的重要结论解题解:(1)因为x0,所以x+10;(2)a20,;(3)a2+2a+1=(a+1)2 又(a+1)20,a2+2a+10,=a2+2a+1;(4)4x2-12x+9=(2x)2-22x3+32=(2x-3)2 又(2x-3)20 4x2-12x+90,=4x2-12x+9.4、化简:(1); (2); (3); (4).思路点拨:因为(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 根式 概念 性质
限制150内