《三角函数的诱导定律公式【六定律公式】.doc》由会员分享,可在线阅读,更多相关《三角函数的诱导定律公式【六定律公式】.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、用公式折叠 诱导公式三角函数的诱导公式(六公式)公式一:sin(+k*2)=sin (k为整数)cos(+k*2)=cos(k为整数)tan(+k*2)=tan(k为整数)公式二:sin(+) = -sincos(+) = -costan(+)=tan公式三:sin(-) = -sincos(-) = costan (-)=-tan公式四:sin(-) = sincos(-) = -costan(-) =-tan公式五:sin(/2-) = coscos(/2-) =sin由于/2+=-(/2-),由公式四和公式五可得公式六:sin(/2+) = coscos(/2+) = -sin诱导公式
2、记背诀窍:奇变偶不变,符号看象限。2或者也可以这样记:分变整不变,符号看象限。折叠 和(差)角公式三角和公式sin(+)=sincoscos+cossincos+coscossin-sinsinsincos(+)=coscoscos-cossinsin-sincossin-sinsincostan(+)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)(+/2+2k,、/2+2k)积化和差的四个公式sina*cosb=(sin(a+b)+sin(a-b)/2cosa*sinb=(sin(a+b)-sin(a-b)/2cosa*cosb=(cos(
3、a+b)+cos(a-b)/2sina*sinb=-(cos(a+b)-cos(a-b)/2和差化积的四个公式:sinx+siny=2sin(x+y)/2)*cos(x-y)/2)sinx-siny=2cos(x+y)/2)*sin(x-y)/2)cosx+cosy=2cos(x+y)/2)*cos(x-y)/2)cosx-cosy=-2sin(x+y)/2)*sin(x-y)/2)折叠 倍角公式sin(3a)3sina-4sin3a=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a(2c
4、os2a-1)cosa-2(1-cos2a)cosa=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-cos2a)cosa=4cos3a-3cosasin3a4sinasin(60+a)sin(60-a)=3sina-4sin3a=4sina(3/4-sin2a)=4sina(3/2)-sina(3/2)+sina=4sina(sin60+sina)(sin60-sina)=4sina*2sin(60+a)/2cos(60-a)/2*2sin(60-a)/2cos(60+a)/2=4sinasin(60+a)sin(60-a)cos3a4cos
5、acos(60-a)cos(60+a)=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosacos2a-(3/2)2=4cosa(cosa-cos30)(cosa+cos30)=4cosa*2cos(a+30)/2cos(a-30)/2*-2sin(a+30)/2sin(a-30)/2=-4cosasin(a+30)sin(a-30)=-4cosasin90-(60-a)sin-90+(60+a)=-4cosacos(60-a)-cos(60+a)=4cosacos(60-a)cos(60+a)tan3atanatan(60-a)tan(60+a)上述两式相比可得tan3a=
6、tanatan(60-a)tan(60+a)三倍角sin3=3sin-4sin3 =4sinsin(/3+)sin(/3-)cos3=4cos3 -3cos=4coscos(/3+)cos(/3-)tan3=tan()*(-3+tan()2)/(-1+3*tan()2)=tan a tan(/3+a) tan(/3-a)其他多倍角四倍角sin4A=-4*(cosA*sinA*(2*sinA2-1)cos4A=1+(-8*cosA2+8*cosA4)tan4A=(4*tanA-4*tanA3)/(1-6*tanA2+tanA4)五倍角sin5A=16sinA5-20sinA3+5sinAcos5
7、A=16cosA5-20cosA3+5cosAtan5A=tanA*(5-10*tanA2+tanA4)/(1-10*tanA2+5*tanA4)六倍角sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA2)cos6A=(-1+2*cosA)*(16*cosA4-16*cosA2+1)tan6A=(-6*tanA+20*tanA3-6*tanA5)/(-1+15*tanA-15*tanA4+tanA6)七倍角sin7A=-(sinA*(56*sinA2-112*sinA4-7+64*sinA6)cos7A=(cosA*(56*cosA2-112
8、*cosA4+64*cosA6-7)tan7A=tanA*(-7+35*tanA2-21*tanA4+tanA6)/(-1+21*tanA2-35*tanA4+7*tanA6)八倍角sin8A=-8*(cosA*sinA*(2*sinA2-1)*(-8*sinA2+8*sinA4+1)cos8A=1+(160*cosA4-256*cosA6+128*cosA8-32*cosA2)tan8A=-8*tanA*(-1+7*tanA2-7*tanA4+tanA6)/(1-28*tanA2+70*tanA4-28*tanA6+tanA8)九倍角sin9A=(sinA*(-3+4*sinA2)*(64*
9、sinA6-96*sinA4+36*sinA2-3)cos9A=(cosA*(-3+4*cosA2)*(64*cosA6-96*cosA4+36*cosA2-3)tan9A=tanA*(9-84*tanA2+126*tanA4-36*tanA6+tanA8)/(1-36*tanA2+126*tanA4-84*tanA6+9*tanA8)十倍角sin10A = 2*(cosA*sinA*(4*sinA2+2*sinA-1)*(4*sinA2-2*sinA-1)*(-20*sinA2+5+16*sinA4)cos10A = (-1+2*cosA2)*(256*cosA8-512*cosA6+304
10、*cosA4-48*cosA2+1)tan10A = -2*tanA*(5-60*tanA2+126*tanA4-60*tanA6+5*tanA8)/(-1+45*tanA2-210*tanA4+210*tanA6-45*tanA8+tanA10)N倍角根据棣莫弗定理,(cos+ i sin)n = cos(n)+ i sin(n)为方便描述,令sin=s,cos=c考虑n为正整数的情形:cos(n)+ i sin(n) = (c+ i s)n = C(n,0)*cn + C(n,2)*c(n-2)*(i s)2 + C(n,4)*c(n- 4)*(i s)4 + . +C(n,1)*c(n-
11、1)*(i s)1 + C(n,3)*c(n-3)*(i s)3 + C(n,5)*c(n-5)*(i s)5 + . =;比较两边的实部与虚部实部:cos(n)=C(n,0)*cn + C(n,2)*c(n-2)*(i s)2 + C(n,4)*c(n-4)*(i s)4 + . i*虚部:i*sin(n)=C(n,1)*c(n-1)*(i s)1 + C(n,3)*c(n-3)*(i s)3 + C(n,5)*c(n-5)*(i s)5 + . 对所有的自然数n:cos(n):公式中出现的s都是偶次方,而s2=1-c2(平方关系),因此全部都可以改成以c(也就是cos)表示。sin(n):
12、当n是奇数时:公式中出现的c都是偶次方,而c2=1-s2(平方关系),因此全部都可以改成以s(也 就是sin)表示。当n是偶数时:公式中出现的c都是奇次方,而c2=1-s2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cos)的一次方无法消掉。例. c3=c*c2=c*(1-s2),c5=c*(c2)2=c*(1-s2)2)特殊公式(sina+sin)*(sina-sin)=sin(a+)*sin(a-)证明:(sina+sin)*(sina-sin)=2 sin(+a)/2 cos(a-)/2 *2 cos(+a)/2 sin(a-)/2=sin(a+)*sin(a-)折叠 坡度
13、公式我们通常把坡面的垂直高度h与水平宽度l的比叫做坡度(也叫坡比), 用字母i表示,即i=h / l,坡度的一般形式写成l : m形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.半角公式万能公式6辅助角公式注:该公式又称收缩公式 / 强提公式 / 化一公式 等asin +bcos =(a2+b2)sin(+),其中tan =b/aasinA+bcosB=根号下a方+b方(根号下a方+b方分之asinA+根号下a方+b方分之bcosB) 令根号下a方+b方分之a=cosC 则根号下a方+b方分之b=sinC asinA+bcosB=根号下a方+b方(s
14、inAcosC+cosBsinC)=根号下a方+b方sin(A+C)折叠 双曲函数h a = ea-e(-a)/2ch a = ea+e(-a)/2th a = sin h(a)/cos h(a)公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k+)= sincos(2k+)= costan(2k+)= tancot(2k+)= cot公式二:设为任意角,+的三角函数值与的三角函数值之间的关系:sin(+)= -sincos(+)= -costan(+)= tancot(+)= cot公式三:任意角与 -的三角函数值之间的关系:sin(-)= -sincos(-)= cost
15、an(-)= -tancot(-)= -cot公式四:利用公式二和公式三可以得到-与的三角函数值之间的关系:sin(-)= sincos(-)= -costan(-)= -tancot(-)= -cot公式五:利用公式-和公式三可以得到2-与的三角函数值之间的关系:sin(2-)= -sincos(2-)= costan(2-)= -tancot(2-)= -cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2+)= coscos(/2+)= -sintan(/2+)= -cotcot(/2+)= -tansin(/2-)= coscos(/2-)= sintan(/2-)= co
16、tcot(/2-)= tansin(3/2+)= -coscos(3/2+)= sintan(3/2+)= -cotcot(3/2+)= -tansin(3/2-)= -coscos(3/2-)= -sintan(3/2-)= cotcot(3/2-)= tan(以上kZ)Asin(t+)+ Bsin(t+) =(A+2ABcos(-) sint + arcsin (Asin+Bsin) / A2 +B2 +2ABcos(-)表示根号,包括中的内容折叠 反三角函数公式arcsin(-x)= -arcsinxarccos(-x)=-arccosxarctan(-x)= -arctanxarcco
17、t(-x)=-arccotxarcsinx+arccosx=arctanx+arccotx=/21折叠 编辑本段 函数应用在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在海岛北偏东30,俯角为30的B处。到11时10分又测得该船在岛北偏西60,俯角为60的C处。(1)该船的航行速度是每小时多少千米?(2)又经过一段时间后,船到达海岛正西方向的D处,此时船距岛A有多远?解(1)在RtPAB中,APB=60 PA=1,AB= 3(千米) 在RtPAC中,APC=30,AC= 3/3(千米)在ACB中,CAB=30+60=90则BC= (AB)2+(AC)2= ( 3/3)2+( 3)2= 30/3( 30/3)/(1/6)=2 30(千米/时)(2)DAC=9060=30sinDCA=sin(180ACB)=sinACB=AB/BC= 3/ 30/3=3 10/10sinCDA=sin(ACB30)=sinACBcos30cosACBsin30=(3 3-1) 10/20在ACD中,据正弦定理得,AD/sinDCA=AC/sinCDAAD=ACsinCDA
限制150内