等腰三角形性质说课稿范文.docx
《等腰三角形性质说课稿范文.docx》由会员分享,可在线阅读,更多相关《等腰三角形性质说课稿范文.docx(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、等腰三角形性质说课稿等腰三角形性质说课稿1各位领导、老师:大家好!我说课的课题是等腰三角形,源于义务教化课程标准试验教科书七年级数学第七章,下面我将来汇报我这节课的教学设计。一、说教材分析1、本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。并且在以后直角三角形和相像三角形中等腰三角形的性质也占有一席之地。2、教学目标:要求学生驾驭等腰三角形的性质和等边三角形的每个角都相等,且每个角都为60度,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基
2、本方法:分析法和综合法,培育学生的联想实力3、教学重点、难点:等腰三角形的性质定理是本课的重点等腰三角形“三线合一”性质的运用是本课的难点4、为了使学生了解这堂课,本课要求学生自制一个等腰三角形模型,教学过程采纳多媒体教学。二、说教学方法:“教必有法而教无定法”,只有方法得当,才会有效。依据本课内容特点和初二学生思维活动的特点,我采纳了教具直观教学法,联想发觉教学法,设疑思索法,逐步渗透法和师生交际相结合的方法。三、说学生学法。“授人以鱼,不如授人以渔”,最有价值的学问是关于方法的学问,首先老师应创建一种环境,引导学生从已知的、熟识的学问入手,让学生自己在某一种环境下不知不觉中运用旧学问的钥匙
3、去打开新学问的大门,进入新学问的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同实力,从而达到发展学生思维实力和自学实力的目的,发掘学生的创新精神。四、说教学程序1、等腰三角形的有关概念,轴对称图形的有关概念。提问:等腰三角形是不是轴对称图形?什么是它的对称轴?2、老师演示(模型)等腰三角形是轴对称图形的试验,并让学生做同样的试验,引导学生视察重合部分,发觉等腰三角形的一些性质。3、新课:让学生由试验或演示指出各自的发觉,并加以引导,用规范的数学语言进行逐条归纳,最终得出等腰三角形的性质定理1、2。性质定理1:等腰三角形的两个底角相等在 ABC中,AB=AC()B= C()性质定理:
4、等腰三角形的顶角平分线、底边上的中线和高线相互重合 AB=AC 1= 2()BD=DC ADBC() AB=AC BD=DC() 1= 2 ADBC() AB=AC ADBC于D() BD=DC 1= 2()4、对新学问的感知性应用指导学生表述证明过程。思索题:等腰三角形两腰上的中线(高线)是否相等?为什么?课堂练习:p。227练习1,练习2(指出这是等边三角形的性质定理)。5、小结:(1)等腰三角形的性质定理。(2)等边三角形的性质(3)利用等腰三角形的性质定理可证明:两角相等,两线段相等,两直线相互垂直。(4)联想方法要常常运用,对解题大有裨益。五、布置作业:见作业本六、对于本节的几点思索
5、1、本节的学习任务比较重要,有定理的证明、定理的计算和证题应用,所以本人针对学生的特点,在上节课例的驾驭好的状况下,让学生自己去发觉、去联想,能充分地发挥学生主观能动性。练习2其目的有二:(一)使学生在复习本节学问。(二)为下一节内容铺垫。2、通过学生自己动手试验得到两个定理的内容,可以使他们比较好的驾驭学问、提高学习数学的爱好,达到了事半功倍之效。3、在整个教学过程中,本人利用多种教学方法,使学生在试验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。总之,在本节教学中,我始终坚持以学生为主体,老师为主导,致力启用学生已驾驭的学问,充分调动学生的爱好和
6、主动性,使他们最大限度地参加到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们绽开联想的思维,培育其实力为主旨而发展的。912等腰三角形的性质定理板书设计课题:等腰三角形的性质定理例1、书写格式例2、书写过程性质定理1性质定理2学生板演等腰三角形性质说课稿2一、教材分析1、教材分析之地位和作用等腰三角形的性质是“华东师大版七年级数学(下)”第九章第三节的内容。本课支配在轴对称的相识后,明确了等腰三角形的性质与轴对称的相识的联系,起到学问的链接与开拓的作用。本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中“等边对等角”的
7、边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所提倡的“视察-发觉-猜想-论证”的数学思想方法是今后探讨数学的基本思想方法。因此,本节内容在教材中处于特别重要的地位,起着承前启后的作用。2、教材分析之教学目标学问与技能目标:驾驭等腰三角形的有关概念和相关性质。娴熟运用等腰三角形的性质解决等腰三角形内角以及边的计算问题。过程与方法目标:通过对性质的探究活动和例题的分析,培育学生多角度思索问题的习惯,提高学生分析问题和解决问题的实力。情感与看法目标:通过对等腰三角形的视察、试验、归纳,体验数学活动充溢着探究性和创建性,突出数学就在我们身边。在操作活动中,培育学生之间的合作精神,在独立思
8、索的同时能够认同他人。3、教材分析之教学重难点重点:探究等腰三角形“等边对等角”和“三线合一”的性质。(这两特性质对于平面几何中的计算,以及今后的证明尤为重要,故确定为重点)难点:等腰三角形中关于底和腰,底角和顶角的计算问题。(由于等腰三角形底和腰,底角和顶角性质特点很简单混淆,而且它们在用法和探讨上很有探究,只能练习实践中获得阅历,故确定犯难点。)4、教材分析之教法数学是一门培育人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,“教必有法而教无定法”,只有方法得当,才会有效。依据本课内容特点和初一学生思维活动的特点,我采纳了教具直观教学法,联
9、想发觉教学法,设疑思索法,逐步渗透法和师生交际相结合的方法。5、教材分析之学法最有价值的学问是关于方法的学问,首先对于我们老师应当创建一种环境,引导学生从已知的、熟识的学问入手,让学生自己不知不觉中运用旧学问的钥匙去打开新学问的大门,进入新学问的领域。本节课我将采纳学生小组合作,试验操作,视察发觉,师生互动,学生互动的学习方式。学生通过小组合作学会“主动探究-主动总结-主动提高”。突出学生是学习的主体,他们在感受学问的过程中,提高他们“探究-发觉-联想-概括”的实力!二、教学过程:1、创设情景复习提问:向同学们出示几张精致的建筑物图片;问题:轴对称图形的概念?这些图片中有轴对称图形吗?引入新课
10、:再次通过精致的建筑物图片,找出里面的等腰三角形。问题:等腰三角形是轴对称图形吗?相关概念:定义:两条边相等的三角形叫做等腰三角形。边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边.角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.2、探究问题动动手:让同学们做出一张等腰三角形的半透亮的纸片,每个人的等腰三角形的大小和形态可以不一样,把纸片对折,让两腰重合在一起,你能发觉什么现象?请你尽可能多的写出结论。得出结论:可让学生有充分的时间视察、思索、沟通、可能得到的结论:(1)等腰三角形是轴对称图形(2)B=C(3)BD=CD,AD为底边上的中线(4)ADB=ADC=90,AD为
11、底边上的高线(5)BAD=CAD,AD为顶角平分线3、重要性质性质1:等腰三角形的两底角相等。(简写成“等边对等角”)性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高相互重合。(简称“三线合一”)如图,在ABC中,AB=AC,点D在BC上(1)假如BAD=CAD,那么ADBC,BD=CD(2)假如BD=CD,那么BAD=CAD,ADBC(3)假如ADBC,那么BAD=CAD,BD=CD(为了便利记忆可以说成“知一求二!”)等腰三角形性质说课稿3一、教材分析本节课是在学习了轴对称图形以及全等三角形的判定的基础上进行的,主要学习等腰三角形的“等边对等角”和“等腰三角形的三线合一”两特性质
12、。本节内容是对前面学问的深化和应用,它的性质定理不仅是证明角相等、线段相等及两直线相互垂直的依据,而且也是后继学习线段垂直平分线、等腰梯形的预备学问。因此,本节内容在教材中处于特别重要的地位,起着承前启后的作用。二、教学目的(一)学问目标:知道等腰三角形的定义及相关概念,理解等腰三角形的性质,会利用等腰三角形的性质进行简洁的推理、推断和计算。(二)实力目标:通过实践,视察,证明等腰三角形性质,发展学生合情推理和演绎推理实力,通过运用等腰三角形的性质解决有关问题,提高分析问题、解决问题实力。(三)情感目标:在实际操作动手中激发学生的学习爱好,体验几何发觉的乐趣,从而增加学生学数学、用数学的意识。
13、三、教学重、难点(一)重点:等腰三角形的性质的探究及应用(二)难点:等腰三角形“三线合一”性质的运用四、教学方法(一)教法:本节课采纳了教具直观教学法,联想发觉教学法,设疑思索法,逐步渗透法和师生交际相结合的方法。(二)学法:本节课主要引导学生从已知的、熟识的学问入手,让学生自己在某一种环境下不知不觉中运用旧学问的钥匙去打开新学问的大门,进入新学问的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同实力,从而达到发展学生思维实力和自学实力的目的,发掘学生的创新精神。五、教学过程(一)创设情景,引入新知我们学过三角形,你都知道哪些特别的三角形?今日我们来学习其中的一种特别的三角形等腰三角
14、形。等腰三角形的有关概念,轴对称图形的有关概念。提问:等腰三角形是不是轴对称图形?什么是它的对称轴?(二)试验探究,大胆猜想老师演示(模型)等腰三角形是轴对称图形的试验,并让学生做同样的试验,引导学生视察重合部分,发觉等腰三角形的一些性质。(三)证明猜想,形成定理让学生由试验或演示指出各自的发觉,并加以引导,用规范的数学语言进行逐条归纳,最终得出等腰三角形的性质定理1、2。1、性质定理1:等腰三角形的两个底角相等在ABC中,AB=AC()B=C()2、性质定理2:等腰三角形的顶角平分线、底边上的中线和高线相互重合(1)AB=AC1=2()BD=DCADBC()(2)AB=ACBD=DC() 1
15、=2ADBC()(3)AB=ACADBC于D()BD=DC1=2()(四)应用举例,强化训练指导学生表述证明过程。思索题:等腰三角形两腰上的中线(高线)是否相等?为什么?(五)归纳小结,布置作业1、归纳:(1)等腰三角形的性质定理。(2)等边三角形的性质(3)利用等腰三角形的性质定理可证明:两角相等,两线段相等,两直线相互垂直。(4)联想方法要常常运用,对解题大有裨益。2、作业布置:(1)必做题:书本课后作业(2)选做题:搜集日常生活中应用等腰三角形的实例,并思索这些实例运用了等腰三角形的哪些性质?等腰三角形性质说课稿4一、教材分析1、教材的地位和作用等腰三角形的性质是“华东师大版八年级数学(
16、上)”第十三章第三节第一课时的内容。本节先课利用轴对称的学问来探究发觉等腰三角形的有关性质,然后利用全等三角形的学问证明这些性质。学习过程中运用的“操作视察发觉猜想论证应用”的方法是探究数学学问的常用方法。同时“等边对等角”和“三线合一”的性质是又是接下来学习等边三角形学问以及等腰三角形的判定的基础学问,更是今后论证两个角相等、两条线段相等、两条线垂直的重要依据。起着承前启后的作用。2、教材的教学目标:学问与技能目标:驾驭等腰三角形的有关概念和相关性质,能运用它们解决等腰三角形的边、角计算问题。过程与方法目标:通过实践、视察、同组间学生以及小组与小组间的合作与沟通,培育学生多角度思索问题和分析
17、问题、解决问题的实力。情感与看法目标:通过合作沟通培育学生团结协作、乐于助人的品质。3、教学重点与难点:重点:等腰三角形“等边对等角”和“三线合一”性质的探究和应用。难点:等腰三角形性质的推理证明。二、学情分析八年级上期学生学习几何学问有了初步的抽象思维感知,有肯定的形象直观思维实力,能进行简洁的推理论证。但其运用数学思维的广袤性、紧密性、敏捷性比较欠缺,在学习过程中要加强引导和培育。三、教法与手段依据本课内容特点和初二学生思维活动的特点,在教学中我将采纳“操作视察发觉猜想论证应用”的教学法,利用分组活动,组间合作与沟通从而达到对“等边对等角”和“三线合一”的性质的探究的层层深化。另外,我还将
18、采纳多媒体协助教学,呈现更直观的形象,激发学生的主动性、主动性,增大课堂容量,提高教学效率。四、学法设计数学课程标准指出:数学的抽象结论,应以视察、试验为前提,几何教学应当把试验方法与逻辑分析结合起来。结合这一理念在探究等腰三角形的性质时我将采纳学生试验操作、小组合作、视察发觉、师生互动、学生互动的学习方式。五、教学过程设计(一)创设情景、导入新课复习提问:向同学们出示几张精致的建筑物图片,引入等腰三角形。(设计意图:感知数学学问和实际生活联系紧密,培育视察力,感受身边到处有数学。)等腰三角形的相关概念:1定义:两条边相等的三角形叫做等腰三角形。边:等腰三角形中,相等的两条边叫做腰,另一条边叫
19、做底边。角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。设问:等腰三角形具有哪些特别的性质呢?(引入新课)(二)试验探究、得出猜想:动动手:让同学们用剪刀在长方形纸片上剪下等腰三角形,每个人的等腰三角形的大小和形态可以不一样,把纸片对折,让两腰重合在一起,你能发觉什么现象?“比一比”看谁思索的结论最多。(设计意图:以六人小组为单位学生亲自操作试验,填写导学案。通过组内合作与沟通,集思广益让学生用自己的语言在小组内表达自己的发觉。)得出猜想:可让学生有充分的时间视察、思索、沟通、可能得到的结论:(1)等腰三角形是轴对称图形(2)B=C(3)BD=CD,AD为底边上的中线(4)ADB
20、=ADC=90,AD为底边上的高线(5)BAD=CAD,AD为顶角平分线(设计意图:以小组为单位派代表发言即组间沟通补充,引导归纳提炼,使不同层次的学生都能感受新知,建立新的学问体系,为进一步探究做打算。)(三)证明猜想、形成定理:1、结论(2)B=C你能用一个命题表达这一结论并论证它的正确性吗?(1)语言总结:等腰三角形的两底角相等。(简写成“等边对等角”)(2)怎样论证这个一命题的正确性呢?为证B=C,须要添加协助线构造以B、C为元素的两个全等三角形。探讨添加协助线的方法,让学生选择一种协助线并完成证明过程。设计说明:以上过程分小组探讨,在探究过程中激励学生寻求不同(作高、中线、角平分线)
21、的方法来解决问题。利用展台展示各小组不同的证明方法,让学生的特性得到充分的展示。(3)得出等腰三角形的性质1:等腰三角形的两底角相等。(简写成“等边对等角”)2、结论(3)(4)(5)你也能用一个命题表达这一结论并论证它的正确性吗?(1)结合性质一的证明激励学生证明总结的命题(2)得出等腰三角形的性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高相互重合。(3)“三线合一”的几何表达:如图,在ABC中,AB=AC,点D在BC上(1)假如BAD=CAD,那么ADBC,BD=CD(2)假如BD=CD,那么BAD=CAD,ADBC(为了便利记忆可以说成“知一求二!”)(3)假如ADBC,那么
22、BAD=CAD,BD=CD2设计意图:充分调动各组学生的主动性、主动性,采纳各小组竞争的方式,参照性质1的探究完成本性质的探究与证明。通过本性质的探究让不同的学生有不同的收获,让每个学生的实力都得到提升。(四)实例剖析、巩固新知:1、例1:已知:在ABC中,AB=AC,B80,求C和A的度数2、例2:在ABC中,AB=AC,点D是BC的中点,B=30(1)求ADC的度数(2)求BAD的度数此题的目的在于等腰三角形“等边对等角”和“三线合一”性质的综合运用,以及怎么书写解答题,强调“三线合一”的表达过程。解:(1)AB=AC,D是BC边上的中点(已知)ADBC,BAD=CAD(等腰三角形的“三线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等腰三角形 性质 说课稿 范文
限制150内