高中数学学业水平考知识点总结范本.docx
《高中数学学业水平考知识点总结范本.docx》由会员分享,可在线阅读,更多相关《高中数学学业水平考知识点总结范本.docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学学业水平考知识点总结中学数学学业水平考学问点总结11.万能公式令tan(a/2)=tsina=2t/(1+t2)cosa=(1-t2)/(1+t2)tana=2t/(1-t2)2.协助角公式asint+bcost=(a2+b2)(1/2)sin(t+r)cosr=a/(a2+b2)(1/2)sinr=b/(a2+b2)(1/2)tanr=b/a3.三倍角公式sin(3a)=3sina-4(sina)3cos(3a)=4(cosa)3-3cosatan(3a)=3tana-(tana)3/1-3(tana2)sina_cosb=sin(a+b)+sin(a-b)/2cosa_sinb=s
2、in(a+b)-sin(a-b)/2cosa_cosb=cos(a+b)+cos(a-b)/2sina_sinb=-cos(a+b)-cos(a-b)/2sina+sinb=2sin(a+b)/2cos(a-b)/2sina-sinb=2sin(a-b)/2cos(a+b)/2cosa+cosb=2cos(a+b)/2cos(a-b)/2cosa-cosb=-2sin(a+b)/2sin(a-b)/2向量公式:1.单位向量:单位向量a0=向量a/|向量a|2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根号(x平方+y平方)3.P1(x1,y1)P2(x2,y2)那么向量P1P2
3、=x2-x1,y2-y1|向量P1P2|=根号(x2-x1)平方+(y2-y1)平方4.向量a=x1,x2向量b=x2,y2向量a_向量b=|向量a|_|向量b|_Cos=x1x2+y1y2Cos=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根号(x1平方+y1平方)_根号(x2平方+y2平方)5.空间向量:同上推论(提示:向量a=x,y,z)6.充要条件:假如向量a向量b那么向量a_向量b=0假如向量a/向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y27.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方中学数
4、学学业水平考学问点总结21.“包含”关系子集留意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(55,且55,则5=5)实例:设A=2-1=0B=-1,1“元素相同”结论:对于两个集合A与B,假如集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B任何一个集合是它本身的子集。AA真子集:假如AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)假如AB,BC,那么AC假如AB同时BA那么A=B3.不含任何元素的集合叫做空集,记为
5、规定:空集是任何集合的子集,空集是任何非空集合的真子集中学数学学业水平考学问点总结31.求函数的单调性:利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)假如恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)假如恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)假如恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数.利用导数求函数单调性的基本步骤:求函数yf(x)的定义域;求导数f(x);解不等式f(x)0,解集在定义域内的不间断区间为增区间;解不等式f(x)0,解集在定义域内的不间断区间为减区间.反过来,也可以利用导数由函数的单
6、调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,(1)假如函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);(2)假如函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);(3)假如函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立.2.求函数的极值:设函数yf(x)在x0及其旁边有定义,假如对x0旁边的全部的点都有f(x)f(x0)(或f(x)f(x0),则称f(x0)是函数f(x)的微小值(或极大值).可导函数的极值,可通过探讨函数的单调性求得,基本步骤是:(1)确
7、定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x改变时,f(x)和f(x)值的改变状况:(4)检查f(x)的符号并由表格推断极值.3.求函数的值与最小值:假如函数f(x)在定义域I内存在x0,使得对随意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值.函数在定义域内的极值不肯定,但在定义域内的最值是的.求函数f(x)在区间a,b上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间a,b上的值与最小值.4.解决不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 学业 水平 知识点 总结 范本
限制150内