中级无机化学第四章ppt课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《中级无机化学第四章ppt课件.ppt》由会员分享,可在线阅读,更多相关《中级无机化学第四章ppt课件.ppt(174页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、过渡元素的配合物的成键理论过渡金属化合物的电子光谱过渡元素的磁性第 四 章d区过渡元素(I) 配位化合物 二配位配合物的中心金属离子大都具有d0和d10的电子结构, 这类配合物的典型例子是Cu(NH3)2、AgCl2、Au(CN)2等。 所有这些配合物都是直线形直线形的, 即配体金属配体键角为180。 作为粗略的近似, 可以把这种键合描述为配位体的配位体的轨道和金轨道和金属原子的属原子的sp杂化轨道重叠的结果杂化轨道重叠的结果。不过, 在某种程度上在某种程度上过渡金属的d轨道也可能包括在成键中, 假定这种键位于金属原子的z轴上, 则在这时, 用于成键的金属的轨道已将不是简单的spz杂化轨道,
2、而是具有pz成分成分, dz2成分和成分和s成分的成分的spd杂化轨道了杂化轨道了。 在在d0的情况下的情况下, 金属仅以dz2和s形成ds杂化轨道, 配体沿z轴与这个杂化轨道形成配键配键, 与此同时金属的dxz和dyz原子轨道分别和配体在x和y方向的px、py轨道形成两条两条pd键键。结果是能量降低, 加强了配合物的稳定性。4.1 配位化合物的几何构型配位化合物的几何构型 4.1.1 低配位配合物低配位配合物1 二配位配合物 这种配位数的金属配合物是比较少的。 2 三配位配合物 已经确认的如 KCu(CN)2, 它是一个聚合的阴离子, 其中每个Cu (I)原子与两个C原子和一个N原子键合。
3、Cu(Me3PS)3Cl 中的Cu也是三配位的。 在所有三配位的情况下, 金属原子与三个直接配位的配位原子都是共平面的, 有平面三角形的结构。 并非化学式为MX3都是三配位的。如, CrCl3为层状结构, 是六配位的;而CuCl3是链状的, 为四配位, 其中含有氯桥键, AuCl3也是四配位的, 确切的分子式为Au2Cl6。 一般非过渡元素的四配位化合物都是四面体构型。这是因为采取四面体空间排列, 配体间能尽量远离, 静电排斥作用最小能量最低。但当除了用于成键的四对电子外, 还多余两对电子时, 也能形成平面正方形构型, 此时, 两对电子分别位于平面的上下方, 如XeF4就是这样。 过渡金属的四
4、配位化合物既有四面体形, 也有平面正方形, 究竟采用哪种构型需考虑下列两种因素的影响。 (1) 配体之间的相互静电排斥作用; (2) 配位场稳定化能的影响(见后)。3 四配位化合物 四配位是常见的配位, 包括 平面正方形和四面体平面正方形和四面体 两种构型。 一般地,当4个配体与不含有d8电子构型的过渡金属离子或原子配位时可形成四面体构型配合物。 而d8组态的过渡金属离子或原子一般是形成平面正方形配合物, 但具有d8组态的金属若因原子太小, 或配位体原子太大, 以致不可能形成平面正方形时, 也可能形成四面体的构型。4 五配位化合物 应当指出,虽然有相当数目的配位数为5的分子已被确证,但呈现这种
5、奇配位数的化合物要比配位数为4和6的化合物要少得多。如PCl5,在气相中是以三角双锥的形式存在,但在固态中则是以四面体的PCl4离子和八面体的PCl6离子存在的。因此,在根据化学式写出空间构型时,要了解实验测定的结果,以免判断失误。 五配位有两种基本构型, 三角双锥和四方锥, 当然还存在变形的三角双锥和变形的四方锥构型, 它们分别属于D3h和C4v对称群。D3h C4v 这两种构型易于互相转化, 热力学稳定性相近, 例如在Ni(CN)53的结晶化合物中, 两种构型共存。这是两种构型具有相近能量的有力证明。5 六配位化合物 对于过渡金属, 这是最普遍且最重要的配位数。其几何构型通常是相当于6个配
6、位原子占据八面体或变形八面体的角顶。 一种非常罕见的六配位配合物是具有三棱柱的几何构型, 之所以罕见是因为在三棱柱构型中配位原子间的排斥力比在三方反棱柱构型中要大。如果将一个三角面相对于相对的三角面旋转60, 就可将三棱柱变成三方反棱柱的构型。 八面体变形的一种最普通的形式是四方形畸变, 包括八面体沿一个四重轴压缩或者拉长的两种变体。四方形畸变 变形的另一种型式是三方形畸变, 它包括八面体沿三重对称轴的缩短或伸长, 形式三方反棱柱体。三方形畸变6 七配位化合物 大多数过渡金属都能形成七配位的化合物, 其立体化学比较复杂, 已发现七配位化合物有下面几种构型, 但最常见的是前三种。 可以发现: 在
7、中心离子周围的七个配位原子所构成的几何体远比其它配位形式所构成的几何体对称性要差得多。 这些低对称性结构要比其它几何体更易发生畸变, 在溶液中极易发生分子内重排。 含七个相同单齿配体的配合物数量极少, 含有两个或两个以上不同配位原子所组成的七配位配合物更趋稳定, 结果又加剧了配位多面体的畸变。五角双锥 单帽八面体 单帽三角棱柱体 两种43的形式 (帽在八面体的 (帽在三棱柱的 (正方形三角形帽结构投影) 一个三角面上) 矩形面上) 八配位和八配位以上的配合物都是高配位化合物。 一般而言, 形成高配位化合物必须具行以下四个条件。 中心金属离子体积较大, 而配体要小, 以便减小空间位阻; 中心金属
8、离子的d电子数一般较少,一方面可获得较多的配位场稳定化能, 另一方面也能减少d电子与配体电子间的相互排斥作用; 中心金属离子的氧化数较高; 配体电负性大, 变形性小。 综合以上条件, 高配位的配位物, 其 中心离子通常是有d0d2电子构型的第二、三过渡系列的离子及镧系、锕系元素离子, 而且它们的氧化态一般大于3; 而常见的配体主要是F、O2、CN、NO3、NCS、H2O等。4.1.2 高配位数配合物 八配位的几何构型有五种基本方式: 其中最常的是四方反棱柱体和十二面体。 四方反棱柱体 十二面体 立方体 双帽三角棱柱体 六角双锥 九配位的理想几何构型是三帽三角棱柱体, 即在三角棱柱的三个矩形柱面
9、中心的垂线上, 分别加上一个帽子;另外一种构型是单帽四方反棱柱体, 帽子在矩形的上面。 三帽三角棱柱体 单帽四方反棱柱体 配位数为配位数为14的配合物可能是目前发现的配位数最高的化合物, 其几何结构为双帽六角反棱柱体。双帽四方反棱柱体 双帽12面体 配位数为配位数为10的配位多面体是复杂的, 通常遇到的有双帽四方反棱柱体和双帽12面体。单帽五角棱柱体 单帽五角反棱柱体 十一配位十一配位的化合物极少, 理论上计算表明, 配位数为十一的配合物很难具有某个理想的配位多面体。可能为单帽五角棱柱体或单帽五角反棱柱体, 常见于大环配位体和体积很小的双齿硝酸根组成的络合物中。 配位数配位数为为12的配合物的
10、理想几何结构为二十面体。4.1.3 立体化学非刚性和流变分子立体化学非刚性和流变分子 所谓刚就是坚硬, 意味着不容易发生变化。 在固体时物质中的分子的原子尽管能在其平衡位置不停地振动, 但这个振幅一般不大, 故我们认为它是刚性刚性。 然而在溶液中的分子或离子却可以存在多种激发态。原子的位置能相互交换, 分子的构型发生变化, 这种分子构型变化或分子内重排的动力学问题称为立体化学的非刚性立体化学的非刚性。 如果重排后得到两种或两种以上的不等价的构型称作异异构化作用构化作用; 如果重排后得到两种或两种以上在结构上是等价的构型, 则称为流变作用流变作用。 具有流变作用的分子称为流变分子流变分子。 如五
11、配位的化合物一般采取三角双锥和四方锥的构型, 而这两种构型的热力学稳定性相近, 易于互相转化。 PF5在气态时三角双锥的构型。核磁共振研究表明, 所有的F都是等价的。如果F被电负性基团所取代, 则剩下的F位于三角双锥的轴向位置。 如PF3L2, 其中两个F在轴向, 一个F和两个L 在赤道。核磁共振研究表明, 它有两组信号组, 强度为2:1。 但当温度升高到高于100, 则核磁共振的信号变成了一组, 说明轴向和赤道的F迅速交换, 变成等价的了。FLLFFP 这种交换是怎么进行的呢? 在下图中, B平面是轴平面, A平面是赤道平面, 以位于赤道平面的F*作为支点, 保持不动, 平面中的另两个F原子
12、向支点F*原子移动, 使 FPF键角由原来的120增加到180。而轴向的两个F原子在平面B内向离开支点原子F*的方向移动, 键角从180减小为120。这样一来, 原来的两个轴原子为F, 现在变成了赤道原子, 而原来两个赤道原子F现在变成了轴原子, 形成了一个新的等价的三角双锥构型。在重排中经历了四方锥的中间体。 这种机理称为成对交换机理。这种交换产生的新的构型同原来的构型是等价的, 因而是一种流变作用, PF5属于流变分子。 配位数为八的配合物有两种构型: 十二面体和四方反棱柱体。 在十二面体中, 有两种不同的配位原子:一为A型, 每个A的周围有四个相邻原子;一为B型, 在每个B的周围有五个相
13、邻原子。 A和B可以通过如下途径进行交换。 在(a)中, B1B2和B3B4伸长, 使得A1B1A2B2和A3B3A4B4变成四边形, 形成一个四方反棱柱的中间体。这个四方反棱柱中间体既可以重新再变回到原来的12面体, 也可以通过A1A2、A3A4彼此接近, 变为与原先十二面体等价的另一种构型, 但此时配位体A和B的位置已经相互交换, 在A的周围变成了五个相邻原子和B的周围有四个相邻原子了。 (a)和(c)是等价的两种构型。A1A4A3A2A1A1A2A2A3A3A4B1B4B3B2B1B1B2B2B3B3B4B4A4 (a) (b) (c) 配位化合物有两种类型的异构现象: 化学结构异构 立
14、体异构 化学结构异构是化学式相同, 原子排列次序不同的异构体。包括电离异构、键合异构、配位异构、配位体异构、构型异构、溶剂合异构和聚合异构; 立体异构是化学式和原子排列次序都相同, 仅原子在空间的排列不同的异构体。包括几何异构和光学异构。 一般地说, 只有惰性配位化合物才表现出异构现象, 因为不安定的配位化合物常常会发生分子内重排, 最后得到一种最稳定的异构体。7.2 配位化合物的异构现象 立体异构可分为几何异构和光学异构两种1 几何异构 在配合物中, 配体可以占据中心原子周围的不同位置。所研究的配体如果处于相邻的位置, 我们称之为顺式结构, 如果配体处于相对的位置, 我们称之为反式结构。由于
15、配体所处顺、反位置不同而造成的异构现象称为顺反异构。 很显然, 配位数为2的配合物, 配体只有相对的位置, 没有顺式结构, 配位数为3和配位数为4的四面体, 所有的配位位置都是相邻的, 因而不存在反式异构体, 然而在平面四边形和八面体配位化合物中, 顺反异构是很常见的。4.2.1 配合物的立体异构平面四边形配合物 MA2B2型平面四边形配合物有顺式和反式两种异构体。 最典型的是Pt(NH3)2Cl2, 其中顺式结构的溶解度较大, 为 0.25 g100g水, 偶极矩较大, 为橙黄色粉末, 有抗癌作用。反式难溶, 为0.0366 g100g, 亮黄色, 为偶极矩为0, 无抗癌活性。 含有四个不同
16、配体的MABCD配合物有三种异构体, 这是因为B、C、D都可以是A的反位基团。 其中的角括弧表示相互成反位。 不对称双齿配体的平面正方形配合物M(AB)2也有几何异构现象, 如式中(AB)代表不对称的双齿配体。ABBAABABMM顺式反式记作 M M MADBCACDBADCBMMMABBAABABMM顺式反式八面体配合物 在八面体配合物中, MA6和MA5B显然没有异构体。 在MA4B2型八面体配合物也有顺式和反式的两种异构体: MA3B3型配合物也有两种异构体、一种是三个A占据八面体的一个三角面的三个顶点, 称为面式;另一种是三个A位于正方平面的三个顶点, 称为经式或子午式(八面体的六个顶
17、点都是位于球面上, 经式是处于同一经线, 子午式意味处于同一子午线之上)。AABBAA顺式ABABAA反式经式(子午式)BAABAB面 式BBABAAAACBDA面式AACADB经式 MA3(BC)D(其中BC为不对称二齿配体)也有面式和经式的区别。在面式的情况下三个A处于一个三角面的三个顶点, 在经式中, 三个A在一个四方平面的三个顶点之上。 MABCDEF型配合物应该有15种几何异构体, 有兴趣的同学可以自己画一下。 M(AB)3也有面式和经式的两种异构体:ABBABA面 式BBBAAA经 式 M(ABA)2(其中ABA为齿配体)型配合物有三种异构体: 分别为面式、对称的经式和不对称的经式
18、。 面式 (ABA处于一个三角面的三个顶点) 对称经式(ABA处于一个三角面的三个顶点并呈对称分布) 不对称经式(ABA处于一个平面四边形的三个顶点但呈不对称分布)AAAABBAAABABAAAABB2 光学异构 数学上已经严格证明, 手性分子的必要和充分条件是不具备任意次的旋转反映轴Sn。旋光异构现象 光学异构又称旋光异构。旋光异构是由于分子中没有对称因素(面和对称中心)而引起的旋光性相反的两种不同的空间排布。当分子中存在有一个不对称的碳原子时, 就可能出现两种旋光异构体。旋光异构体能使偏振光左旋或右旋, 而它们的空间结构是实物和镜象不能重合, 尤如左手和右手的关系, 彼此互为对映体。 具有
19、旋光性的分子称作手性分子。HCCOOHOHH3C*COOHCHOHH3CCHHOCH3HOOC 旋光异构通常与几何异构有密切的关系。一般地反式异构体没有旋光活性,顺式可分离出旋光异构体来。CoCoenenenenCoNO2enenO2NNO2NO2NO2O2N反式Co(en)2(NO2)2, 顺式Co(en)2(NO2)2 无旋光对映体 有旋光对映体 M(AA)3(如Co(en)3)和M(AA)2X2型的六配位螯合物有很多能满足上述条件, 其不对称中心是金属本身。CoCoenenenenenenAAMAAAAXMAAXXXCo(en)3)M(AA)2X2 2 溶剂合异构 当溶剂分子取代配位基团
20、而进入配离子的内界所产生的溶剂合异构现象。与电离异构极为相似, 最熟悉的例子是: Cr(H2O)6Cl3 Cr(H2O)5ClCl2H2O Cr(H2O)4Cl2Cl2H2O 它们各含有6、5、4个配位水分子, 这些异构体在物理和化学性质上有显著的差异,如它们的颜色分别为绿、蓝绿、蓝紫。4.2.2 化学结构异构化学结构异构 结构异构是因为配合物分子中原子与原子间成键的顺序不同而造成的, 常见的结构异构包括电离异构, 键合异构, 配位体异构和聚合异构。 1 电离异构 名词用于描述在溶液中产生不同离子的异构体, 一个经典的例子是,Co(NH3)5BrSO4紫红色和Co(NH3)5SO4Br(红色)
21、,它们在溶液中分别能产生SO42和Br。 4 配位异构 在阳离子和阴离子都是配离子的化合物中, 配体的分布是可以变化的, 这种异构现象叫配位异构。如 Co(NH3)6Cr(CN)6和Cr(NH3)6Co(CN)6 Cr(NH3)6Cr(SCN)6和Cr(SCN)2(NH3)4Cr(SCN)4(NH3)2 PtII(NH3)4PtCl6和Pt(NH3)4Cl2PtIICl4 可见, 其中的配位体的种类、数目可以进行任意的组合, 中心离子可以相同, 也可以不同, 氧化态可以相同也可以不同。 3 键合异构 有些单齿配体可通过不同的配位原子与金属结合, 得到不同键合方式的异构体, 这种现象称为键合异构
22、。如 Co(NO2)(NH3)52 和 Co(ONO)(NH3)52 前者叫硝基配合物, 是通过N进行配位的;后者叫亚硝基配合物, 是通过O进行配位的。类似的例子还有SCN和CN, 前者可用S或N进行配位, 后者可用C和N进行配位。 从理论上说, 生成键合异构的必要条件是配体的两个不同原子都含有孤电子对。如, :NCS:, 它的N和S上都有孤电子对, 以致它既可以通过N原子又可以通过S原子同金属相联结。 5 聚合异构 聚合异构是配位异构的一个特例。这里指的是既聚合又异构。与通常说的把单体结合为重复单元的较大结构的聚合的意义有一些差别。如Co(NH3)6Co(NO2)6与Co(NO2)(NH3)
23、5Co(NO2)4(NH3)22 和 Co(NO2)2(NH3)43Co(NO2)6是Co(NH3)3(NO2)3的二聚、三聚和四聚异构体, 其式量分别为后者的二、三和四倍。6 配位体异构 这是由于配位体本身存在异构体, 导致配合单元互为异构。 如1,3-二氨基丙烷(H2N-CH2-CH2-CH2-NH2)与1,2-二氨基丙烷(H2N-CH2-CH(NH2)-CH3)是异构的配位体, 它们形成的化合物Co(H2N-CH2-CH2-CH2-NH2)Cl2及Co(H2N-CH2-CH(NH2)-CH3)Cl2互为异构体。7 构型异构 一种配合物可以采取两种或两种以上的空间构型时, 则会产生构型异构
24、现象。如NiCl2(Ph2PCH2Ph)2有四面体和平面四边形两种构型。 常见的构型异构有五配位的三角双锥和四方锥;八配位的十二面体和四方反棱柱体。等等。 2 过渡金属离子是形成配合物的很好的中心形成体。这是因为: 过渡金属离子的有效核电荷大; 电子构型为917型, 这种电子构型的极化能力和变形性都较强, 因而过渡金属离子可以和配体产生很强的结合力。 当过渡金属离子的d轨道未充满时轨道未充满时, 易生成内轨型生成内轨型的配合物;如果d电子较多电子较多, 还易与配位体生成生成附加的反馈反馈键键, 从而增加配合物的稳定性。4.3 过渡元素的配位化学过渡元素的配位化学 过渡元素具有强烈的形成配合物的
25、趋向。这是因为: 1 过渡元素有能量相近的属同一个能级组的(n1)d、ns、np共九条价电子轨道。按照价键理论, 这些能量相近的轨道可以通过不同形式的杂化, 形成成键能力较强的杂化轨道, 以接受配体提供的电子对, 形成多种形式的配合物。 因而有人说, 过渡元素化学就是过渡元素化学就是d电子的配位化学电子的配位化学 显然, 配合物的配位数就是中心原子在成键时动用的空轨道数。 4.3.1 价键理论价键理论(VB理论理论) 配合物的价键理论的基本思想是: 配合物是通过给予体和接受体的反应而生成的, 给予体原子具有孤对电子, 它给出孤对电子进入作为配合物中心原子或离子的空轨道, 为了接受这些电子对,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中级 无机化学 第四 ppt 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内