常微分方程-拉氏变换法求解常微分方程ppt课件.ppt





《常微分方程-拉氏变换法求解常微分方程ppt课件.ppt》由会员分享,可在线阅读,更多相关《常微分方程-拉氏变换法求解常微分方程ppt课件.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1拉普拉斯变换法拉普拉斯变换法 /Laplace Transform /2拉普拉斯变换拉普拉斯变换n含义:q简称拉氏变换q从实变量函数到复变量函数间的一种函数变换 n用途与优点q对一个实变量函数作拉氏变换,并在复数域中进行运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域计算容易得多。n应用:q求解线性微分方程q在经典控制理论中,对控制系统的分析和综合3拉普拉斯变换法用于求解常微分方程的基本思路:拉普拉斯变换法用于求解常微分方程的基本思路: 对常微分方程进行拉氏变换法,得代数方程,求解对常微分方程进行拉氏变换法,得代数方程,求解再反变换获取原方程的解再反变换获取原方
2、程的解问题:问题:1. 什么是拉氏变换什么是拉氏变换2. 拉氏变换的基本性质拉氏变换的基本性质3. 什么是拉氏逆变换什么是拉氏逆变换4. 如何用拉氏变换求解微分方程如何用拉氏变换求解微分方程4若若0dttfest)()(sF0stef tdt())( tf), 0)(tf)()(sFtfL1拉普拉斯变换定义拉普拉斯变换定义(简称拉氏变换简称拉氏变换)对于在对于在上有定义的函数上有定义的函数对于已给的对于已给的S(一般为复数)存在,则称(一般为复数)存在,则称为函数为函数的拉普拉斯变换,记为的拉普拉斯变换,记为TstTdttfe0)(limf (t)称为称为Laplace Transform 的
3、原函数,的原函数,F(s)称为称为f (t)的的象象函数函数. Res5拉普拉斯变换法拉普拉斯变换法存在性存在性是分段连续的是分段连续的, 并且并且 常数常数)(tf0t0M00ttMetf )(sRe)(tf假若函数假若函数在在的每一个有限区间上的每一个有限区间上使对于所有的使对于所有的都有都有成立成立则当则当时时,的的Laplace Transform是存在的。是存在的。61)(tf)(0 t01dtest 例例1 limsessTT11s10sRe)(Re0 11ssL当当即即limTstTes01拉普拉斯变换实例拉普拉斯变换实例7例例2 ( 是给定的实数或复数是给定的实数或复数 ) z
4、tetf)(zzteL0dteeztst)0)(Re( zs)Re(Rezs 0dtetzs)(zs1zteLzs18n常用函数拉氏变换表n利用拉氏变换进行计算时,可直接查变换表得结果92 拉普拉斯变换的基本性质拉普拉斯变换的基本性质)(),(tgtf)()()()(tgLtfLtgtfL1 线性性质线性性质如果如果是原函数是原函数,和和是任意两个常数是任意两个常数(可以是复数可以是复数),则有,则有102 原函数的原函数的微分性质微分性质)(,),(),()(tftftfn )(tfL)()(0ftfsL)()(tfLn)(tfLsn)(01fsn)()()(0012nnffs如果如果都是原
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分方程 变换 求解 ppt 课件

限制150内