《平面直角坐标系中的伸缩变换ppt课件.ppt》由会员分享,可在线阅读,更多相关《平面直角坐标系中的伸缩变换ppt课件.ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、新课标人教版课件系列新课标人教版课件系列高中数学选修选修441.1.1平面直角坐标系请同学们阅读教材选修请同学们阅读教材选修4-4 P1-4建系时,根据几何特点选择适当的直角坐标系。建系时,根据几何特点选择适当的直角坐标系。(1)如果图形有对称中心,可以选对称中心为)如果图形有对称中心,可以选对称中心为坐标原点;坐标原点;(2)如果图形有对称轴,可以选择对称轴为坐)如果图形有对称轴,可以选择对称轴为坐标轴;标轴;(3)使图形上的特殊点尽可能多的在坐标轴上。)使图形上的特殊点尽可能多的在坐标轴上。你能建立不同的直角坐标系解决这个问题吗?比你能建立不同的直角坐标系解决这个问题吗?比较不同的直角坐标
2、系下解决问题的过程,建立直较不同的直角坐标系下解决问题的过程,建立直角坐标系应注意什么问题?角坐标系应注意什么问题?xO 2 y=sinxy=sin2x二二. .平面直角坐标系中的伸缩变换平面直角坐标系中的伸缩变换思考:思考:(1 1)怎样由正弦曲线)怎样由正弦曲线y=sinxy=sinx得到曲线得到曲线y=sin2x?y=sin2x? 在正弦曲线在正弦曲线y=sinx上任取一点上任取一点P(x,y),保持纵坐标不变,保持纵坐标不变,将横坐标将横坐标x缩为原来的缩为原来的 ,就得到正弦曲线,就得到正弦曲线y=sin2x.12通常把通常把 叫做平面直角坐标系中的一个压缩变换。叫做平面直角坐标系中
3、的一个压缩变换。1坐标对应关系为:坐标对应关系为:112xxyy 上述的变换实质上就是一个坐标的压缩变换,即:上述的变换实质上就是一个坐标的压缩变换,即: 设设P(x,y)P(x,y)是平面直角坐标系中任意一点,是平面直角坐标系中任意一点,保持纵坐标保持纵坐标不变,将横坐标不变,将横坐标x x缩为原来缩为原来 ,得到点得到点12,p x y (2)怎样由正弦曲线)怎样由正弦曲线y=sinx得到曲得到曲线线y=3sinx?写出其坐标变换。写出其坐标变换。O 2 y=sinxy=3sinxyx在正弦曲线上任取一点在正弦曲线上任取一点P(x,y),保持横坐标),保持横坐标x不变,不变,将纵坐标伸长为
4、原来的将纵坐标伸长为原来的3倍,就得到曲线倍,就得到曲线y=3sinx。(2)怎样由正弦曲线)怎样由正弦曲线y=sinx得到曲线得到曲线y=3sinx?写出写出其坐标变换。其坐标变换。通常把通常把 叫做平面直角坐标系中的一个坐标伸叫做平面直角坐标系中的一个坐标伸长变换。长变换。223xxyy 设点设点P(x,y)经变换得到点为)经变换得到点为,pxy(3)怎样由正弦曲线)怎样由正弦曲线y=sinx得到曲得到曲线线y=3sin2x? 写出其坐标变换。写出其坐标变换。O 2 y=sinxy=3sin2xyx 在正弦曲线在正弦曲线y=sinx上任取一点上任取一点P(x,y),保持纵坐,保持纵坐标不变
5、,将横坐标标不变,将横坐标x缩为原来的缩为原来的 ,在此基础上,在此基础上,将纵坐标变为原来的将纵坐标变为原来的3倍,就得到正弦曲线倍,就得到正弦曲线y=3sin2x.12设点设点P(x,y)经变换得到点为)经变换得到点为通常把通常把 叫做平面直角坐标系中叫做平面直角坐标系中的一个坐标伸缩变换。的一个坐标伸缩变换。3(3)怎样由正弦曲线)怎样由正弦曲线y=sinx得到曲线得到曲线y=3sin2x? 写出其坐标变换。写出其坐标变换。3123xxyy 定义:设定义:设P(x,y)是平面直角坐标系中任意一点,是平面直角坐标系中任意一点,在变换在变换(0):(0)xxyy 的作用下,点的作用下,点P(
6、x,y)对应对应 称称 为为平面直角坐标系中的伸缩变换平面直角坐标系中的伸缩变换。 4注注 (1) (2)把图形看成点的运动轨迹,平面图)把图形看成点的运动轨迹,平面图形的伸缩变换可以用坐标伸缩变换得到;形的伸缩变换可以用坐标伸缩变换得到; (3)在伸缩变换下,平面直角坐标系不)在伸缩变换下,平面直角坐标系不变,在同一直角坐标系下进行伸缩变换。变,在同一直角坐标系下进行伸缩变换。0,0,p x y 例例2:在直角坐标系中,求下列方程所对应的图形经过:在直角坐标系中,求下列方程所对应的图形经过伸缩变换伸缩变换后的图形。后的图形。(1)2x+3y=0; (2)x2+y2=1 213xxyy 解:
7、由伸缩变换代入2x+3y=01213xxyy得得x +y =023xxyy 22代入x +y =1得2249xy+=1 1222133xxxxyyyy 由 伸 缩 变 换得1.在同一直角坐标系下,求满足下列图形的伸缩变换:在同一直角坐标系下,求满足下列图形的伸缩变换:曲线曲线4x2+9y2=36变为曲线变为曲线0 xxyy 1解:设伸缩变换,22代 入 x +y =1得2 2221xy224936xy又1312则1312xxyy 得221xy2.在同一直角坐标系下经过伸缩变换在同一直角坐标系下经过伸缩变换 后,后,曲线曲线C变为变为 ,求曲线,求曲线C的方程并画出的方程并画出图形。图形。3xxyy 2299xy22得9x -9y =922即x -y =122x -9y =93xxyy2.解:将代入答案:y3sin2x课堂小结:课堂小结:(1)体会坐标法的思想,应用坐标)体会坐标法的思想,应用坐标法解决几何问题;法解决几何问题;(2)掌握平面直角坐标系中的伸缩)掌握平面直角坐标系中的伸缩变换。变换。作业:2.1.2 平面直角坐标系的伸缩变换1.5.5圆锥曲线专题五
限制150内