新人教A版(选修12)11《回归分析的基本思想及其初步应用》ppt课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《新人教A版(选修12)11《回归分析的基本思想及其初步应用》ppt课件.ppt》由会员分享,可在线阅读,更多相关《新人教A版(选修12)11《回归分析的基本思想及其初步应用》ppt课件.ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 1.1 .1 回归分析的基本思想回归分析的基本思想 及其初步应用及其初步应用两个变量的关系两个变量的关系不相关不相关相关关系相关关系函数关系函数关系线性相关线性相关非线性相关非线性相关函数关系中的两个变量间是一种确定性关系。函数关系中的两个变量间是一种确定性关系。相关关系是一种非确定性关系。相关关系是一种非确定性关系。例例1 1、某大学中随机选取某大学中随机选取8 8名女大学生,其身高名女大学生,其身高和体重数据如下表所示和体重数据如下表所示. .编号编号1 12 23 34 45 56 67 78 8身高身高/cm/cm1651651651651571571701701751751651
2、65155155170170体重体重/kg/kg48485757505054546464616143435959(1)画出散点图)画出散点图(2)根据女大学生的身高预报体重的回归方程,)根据女大学生的身高预报体重的回归方程,(3)预报一名身高为)预报一名身高为172cm的女大学生的体重的女大学生的体重.解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。因此可以用线性回归方程刻画它们之间的关系。根据最小二乘
3、法估计根据最小二乘法估计 和和 就是未知参数就是未知参数a和和b的最好估计,的最好估计,ab于是有所以回归方程是所以回归方程是0.84985.712yx所以,对于身高为所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为的女大学生,由回归方程可以预报其体重为 0.849 17285.71260.316()ykg (x,y) (x,y)称称为为样样本本点点的的中中心心身高为身高为172cm的女大学生的体重一定是的女大学生的体重一定是60.316kg吗?吗?如果不是,你能解析一下原因吗?如果不是,你能解析一下原因吗? 样本点呈条状分布,身高和体重有较好的线性相关关样本点呈条状分布,身高
4、和体重有较好的线性相关关系,因此可以用回归方程来近似的刻画它们之间的关系系,因此可以用回归方程来近似的刻画它们之间的关系. .nnnniiiiiiiii=1i=1i=1i=1nnnn2 22222iiiii=1i=1i=1i=1(x -x)(y -y)x y -nxy(x -x)(y -y)x y -nxyb = 0.849,b = 0.849,(x -x)x-nx(x -x)x-nxa = y-bx = -85.712a = y-bx = -85.712解:散点图:解:散点图:3、从散点图还看到,样本点散布在某一条直线的附、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所
5、以不能用一次函数近,而不是在一条直线上,所以不能用一次函数y=bx+a简单描述它们关系。简单描述它们关系。 我们可以用下面的我们可以用下面的线性回归模型线性回归模型来表示:来表示:y=y=bx+a+ebx+a+e,其中,其中a a和和b b为模型的未知参数,为模型的未知参数,e e称为随机误差称为随机误差。思考思考P3产生随机误差项产生随机误差项e的原因是什么?的原因是什么?思考:思考:产生随机误差项产生随机误差项e的原因是什么?的原因是什么?随机误差随机误差e e的来源的来源( (可以推广到一般):可以推广到一般):1、其它因素的影响:影响体重、其它因素的影响:影响体重 y 的因素不只是身高
6、的因素不只是身高 x,可能还包括遗传基因、饮食习惯、生长环境,可能还包括遗传基因、饮食习惯、生长环境等因素;等因素;2、身高、身高 x的观测误差。的观测误差。 线性回归模型线性回归模型y=y=bx+a+ebx+a+e增加了随机误差项增加了随机误差项e e,因,因变量变量y y的值由自变量的值由自变量x x和随机误差项和随机误差项e e共同确定,即共同确定,即自自变量变量x x只能解析部分只能解析部分y y的变化的变化。 在统计中,我们也把自变量在统计中,我们也把自变量x x称为称为解析变量解析变量,因变,因变量量y y为为预报变量预报变量。残差残差数据点和它在回归直线上相应位置的差异数据点和它
7、在回归直线上相应位置的差异 称为相应于点(称为相应于点(x xi i,y yi i ) 的的残差残差。iiieyy=例:编号为例:编号为6 6的女大学生,计算随机误差的效应(残差)的女大学生,计算随机误差的效应(残差)61(0.849 16585.712)6.627残差平方和残差平方和 把每一个残差所得的值平方后加起来,用数学符号表把每一个残差所得的值平方后加起来,用数学符号表示为:示为:21()niiiyy称为称为残差平方和残差平方和在例在例1 1中,残差平方和约为中,残差平方和约为128.361128.361。表表1-4列出了女大学生身高和体重的原始数据以列出了女大学生身高和体重的原始数据
8、以及相应的残差数据。及相应的残差数据。残差分析与残差图的定义:残差分析与残差图的定义: 我们可以通过残差我们可以通过残差 来判断模型拟合的效果,判断原始来判断模型拟合的效果,判断原始数据中是否存在可疑数据,数据中是否存在可疑数据,这方面的分析工作称为残差分析这方面的分析工作称为残差分析。12,ne ee 编号编号12345678身高身高165165157170175165155170体重体重/kg4857505464614359残差残差-6.3732.6272.419-4.6181.1376.627-2.8830.382我们可以利用图形来分析残差特性,作图时纵坐我们可以利用图形来分析残差特性,
9、作图时纵坐标为残差,横坐标可以选为样本编号,或身高数标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为据,或体重估计值等,这样作出的图形称为残差残差图图。残差图的制作及作用。残差图的制作及作用。坐标纵轴为残差变量,横轴可以有不同的选择;坐标纵轴为残差变量,横轴可以有不同的选择;若模型选择的正确,残差图中的点应该分布在以若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域横轴为心的带形区域;对于远离横轴的点,要特别注意对于远离横轴的点,要特别注意。身高与体重残差图异常点 错误数据 模型问题 几点说明:几点说明: 第一个样本点和第第一个样本点和第6个样本点的残
10、差比较大,需要确认在采集过程中是否有人为个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。据;如果数据采集没有错误,则需要寻找其他的原因。 另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的
11、预报精度越高。我们可以用我们可以用相关指数相关指数R2来刻画回归的效果,其计算公式是来刻画回归的效果,其计算公式是n n2 2i ii i2 2i i= =1 1n n2 2i ii i= =1 1( (y y - -y y ) )R R = =1 1- -( (y y - -y y) )显然,显然,R2的值越大,说明残差平方和越小,也就是说模型拟合的值越大,说明残差平方和越小,也就是说模型拟合效果越好。效果越好。R2越接近越接近1,表示回归的效果越好(因为,表示回归的效果越好(因为R2越接近越接近1,表示解析,表示解析变量和预报变量的线性相关性越强)。变量和预报变量的线性相关性越强)。 如果
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 回归分析的基本思想及其初步应用 新人 选修 12 11 回归 分析 基本 思想 及其 初步 应用 ppt 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内