中考数学复习专题——二次函数知识点归纳.pdf
《中考数学复习专题——二次函数知识点归纳.pdf》由会员分享,可在线阅读,更多相关《中考数学复习专题——二次函数知识点归纳.pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 中考复习专题二次函数知识点归纳二次函数知识点总结:1二次函数的概念:一般地,形如2yaxbxc( abc, , 是常数,0a)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a,而 bc, 可以为零二次函数的定义域是全体实数2. 二次函数2yaxbxc 的结构特征: 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2abc, , 是常数,a是二次项系数,b 是一次项系数,c是常数项二次函数的基本形式1. 二次函数基本形式:2yax 的性质:oo结论: a 的绝对值越大,抛物线的开口越小。总结:2. 2yaxc的性质:结论:上加下减。a的符号开口方向顶点坐标对称
2、轴性质0a向上00,y轴0 x时,y随x的增大而增大;0 x时,y随x的增大而减小;0 x时,y有最小值 0 0a向下00,y轴0 x时,y随x的增大而减小;0 x时,y随x的增大而增大;0 x时,y有最大值 0 2 总结:3. 2ya xh的性质:结论:左加右减。总结:4. 2ya xhk 的性质:总结:a的符号开口方向顶点坐标对称轴性质0a向上0c,y轴0 x时,y随x的增大而增大;0 x时,y随x的增大而减小;0 x时,y有最小值c0a向下0c,y轴0 x时,y随x的增大而减小;0 x时,y随x的增大而增大;0 x时,y有最大值ca的符号开口方向顶点坐标对称轴性质0a向上0h,X=h x
3、h时,y随x的增大而增大;xh 时,y随x的增大而减小;xh 时,y有最小值 0 0a向下0h,X=h xh时,y随x的增大而减小;xh 时,y随x的增大而增大;xh 时,y有最大值 0 3 二次函数图象的平移 1. 平移步骤: 将抛物线解析式转化成顶点式2ya xhk,确定其顶点坐标hk,; 保持抛物线2yax 的形状不变,将其顶点平移到hk,处,具体平移方法如下:向右 (h0)【或左 (h0) 【或下 (k0)【或左 (h0)【或左 (h0)【或下 (k0)【或向下 (k0)】平移 |k|个单位y=a (x-h)2+ky=a(x-h)2y=ax2+ky=ax2 2. 平移规律在原有函数的基
4、础上“h 值正右移,负左移;k 值正上移,负下移”概括成八个字“左加右减,上加下减”三、二次函数2ya xhk与2yaxbxc的比较请将2245yxx利用配方的形式配成顶点式。请将2yaxbxc配成2ya xhk。总结:从解析式上看,2ya xhk 与2yaxbxc是两种不同的表达形式,后者通过配方可以得到前者,即22424bacbya xaa,其中2424bacbhkaa,四、二次函数2yaxbxc图象的画法a的符号开口方向顶点坐标对称轴性质0a向上hk,X=h xh时,y随x的增大而增大;xh 时,y随x的增大而减小;xh 时,y有最小值 k 0a向下hk,X=h xh时,y随x的增大而减
5、小;xh 时,y随x的增大而增大;xh 时,y有最大值 k 4 五点绘图法:利用配方法将二次函数2yaxbxc化为顶点式2()ya xhk,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. 一般我们选取的五点为:顶点、 与y轴的交点0c,、以及0c,关于对称轴对称的点2hc,、与x轴的交点10 x ,20 x ,(若与x轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点 . 五、二次函数2yaxbxc的性质 1. 当0a时,抛物线开口向上,对称轴为2bxa,顶点坐标为2424bacbaa,当2bxa时,
6、y随x的增大而减小;当2bxa时,y随x的增大而增大;当2bxa时,y有最小值244acba 2. 当0a时,抛物线开口向下,对称轴为2bxa,顶点坐标为2424bacbaa,当2bxa时,y随x的增大而增大;当2bxa时,y随x的增大而减小;当2bxa时,y有最大值244acba六、二次函数解析式的表示方法1. 一般式:2yaxbxc(a, b ,c为常数 ,0a) ;2. 顶点式:2()ya xhk (a, h , k 为常数 ,0a) ;3. 两根式:12()()ya xxxx(0a,1x ,2x 是抛物线与x轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 复习 专题 二次 函数 知识点 归纳
限制150内