初中数学知识点总结[.pdf
《初中数学知识点总结[.pdf》由会员分享,可在线阅读,更多相关《初中数学知识点总结[.pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载基本知识B、方程与不等式1、方程与方程组一元一次方程:在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。二元一次方程: 含有两个未知数,并且所含未知数的项的次数都是1 的方程叫做二元一次方程。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消
2、元法/加减消元法。一元二次方程:只有一个未知数,并且未知数的项的最高系数为2 的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y 的 0 的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X 轴的交点。也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a) ,这大家要记住,很重要,因为在上面已经说过了, 一元二次方程也是二次函数的一部分,所
3、以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1=- b+b2-4ac)/2a ,X2=-b- b2 -4ac)/2a 3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1 次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否
4、能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c 4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积 =c/a 也可以表示为x1+x2=-b/a,x1x2=c/a 。利用韦达定理,可以求出一元二次方程中的各系数,在学习必备欢迎下载题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“ ” ,读作 “diao ta ”,而 =b2-4ac,这里可以分为3 种情况:I 当 0
5、时,一元二次方程有2 个不相等的实数根;II 当 =0 时,一元二次方程有2 个相同的实数根;III 当 B,A+CB+C 在不等式中, 如果减去同一个数 (或加上一个负数) , 不等式符号不改向; 例如: AB , A-CB-C 在不等式中,如果乘以同一个正数,不等号不改向;例如:AB , A*CB*C ( C0)在不等式中,如果乘以同一个负数,不等号改向;例如:AB ,A*CB*C (C0)如果不等式乘以0,那么不等号改为等号所以在题目中, 要求出乘以的数, 那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;3、函数变量:因变量,自变量。在
6、用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。一次函数:若两个变量X,Y 间的关系式可以表示成Y=KX+B (B 为常数, K 不等于 0)的形式,则称Y 是 X 的一次函数。当B=0 时,称 Y 是 X 的正比例函数。一次函数的图象:把一个函数的自变量X 与对应的因变量Y 的值分别作为点的横坐标与纵坐标, 在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。正比例函数Y=KX的图象是经过原点的一条直线。在一次函数中,当K0,BO,则经234 象限;当 K0,B0 时,则经 124 象限;当 K0,B0 时,则经 134 象限;
7、当 K0,B0 时,则经 123 象限。当K0 时, Y 的值随 X 值的增大而增大,当X0 时, Y 的值随 X 勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。B、图形与变换:1、图形的轴对称轴对称: 如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。学习必备欢迎下载轴对称图形: 角的平分线上的点到这个角的两边的距离相等。线段垂直平分线上的点到这条线段两个端点的距离相等。等腰三角形的“ 三线合一 ” 。轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。2、图形的平移和旋转平移:在平面内,将一个图形沿着
8、某个方向移动一定的距离,这样的图形运动叫做平移。经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。旋转: 在平面内, 将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。 经过旋转, 图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。3、图形的相似比: A/B=C/D ,那么AD=BC ,反之亦然。A/B=C/D ,那么A 土 B/B=C土 D/D 。A/B=C/D= 。 。 。=M/N ,那么 A+C+ +M/B+D+ N=A/B。黄金分割: 点 C 把线段 AB 分成两条
9、线段AC 与 BC,如果 AC/AB=BC/AC ,那么称线段AB被点 C 黄金分割,点 C 叫做线段 AB 的黄金分割点, AC 与 AB 的比叫做黄金比 (根号 5-1/2) 。相似: 各角对应相等,各边对应成比例的两个多边形叫做相似多边形。相似多边形对应边的比叫做相似比。相似三角形:三角对应相等,三边对应成比例的两个三角形叫做相似三角形。条件:AAA 、SSS、SAS。相似多边形的性质:相似三角形对应高,对应角平分线,对应中线的比都等于相似比。相似多边形的周长比等于相似比,面积比等于相似比的平方。图形的放大与缩小:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点, 那么
10、这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。位似图形上任意一对对应点到位似中心的距离之比等于位似比。C、图形的坐标平面直角坐标系:在平面内, 两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做X 轴或横轴,铅直的数轴叫做Y 轴或纵轴, X 轴与 Y 轴统称坐标轴,他们的公共原点 O 称为直角坐标系的原点。他们分4 个象限。 XA ,YB 记作( A,B) 。D、证明定义与命题:对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。对事情进行判断的句子叫做命题(分真命题与假命题)。每个命题是由条件和结论两部分组成。要说明一个命题是假命题,通
11、常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。公理: 公认的真命题叫做公理。其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。同位角相等,两直线平行,反之亦然;SAS、ASA 、SSS ,反之亦然;同旁内角互补,两直线平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180 度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角。由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。三统计与概率1、统计科学记数法:一个大于10 的数可以表示成A*10N 的形式,其中1 小于等于A 小于
12、 10,N是正整数。扇形统计图:用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360 度的比。学习必备欢迎下载各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。近似数字和有效数字:测量的结果都是近似的。利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。对于一个近似数,从左边第一个不是0 的数字起,到精确到的数位止,所有
13、的数字都叫做这个数的有效数字。平均数:对于N 个数 X1,X2XN ,我们把( X1+X2+ +XN)/N 叫做这个N 个数的算术平均数,记为X(上边一横) 。加权平均数: 一组数据里各个数据的重要程度未必相同,因而, 在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。中位数与众数: N 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数) 叫做这组数据的中位数。一组数据中出现次数最大的那个数据叫做这个组数据的众数。优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能
14、充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。调查: 为了一定的目的而对考察对象进行的全面调查,称为普查, 其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间, 人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。频数与频率: 每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。当收集的
15、数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。2、概率可能性: 有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。一般来说, 不确定事件发生的可能性是有大小的。概率:人们通常用1(或 100%)来表示必然事件发生的可能性,用0 来表示不可能事件发生的可能性。 游戏对双方公平是指双方获胜的可能性相同。必然事件发生的概率为1,记作 P(必然事件)=1;不可能事件发生的概率为0,记作 P(不可能事件)=0;如果 A 为不确定事
16、件,那么0P(A) 1。二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行学习必备欢迎下载12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 知识点 总结
限制150内