《数学立体几何第一章全部教案.pdf》由会员分享,可在线阅读,更多相关《数学立体几何第一章全部教案.pdf(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载第一章:空间几何体1.1.1柱、锥、台、球的结构特征( 一) 一、教学目标1知识与技能(1)通过实物操作,增强学生的直观感知。(2)能根据几何结构特征对空间物体进行分类。(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。(4)会表示有关于几何体以及柱、锥、台的分类。2过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。(2)让学生观察、讨论、归纳、概括所学的知识。3情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。(2)培养学生的空间想象能力和抽象括能力。二、教学重点
2、、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。三、教学用具(1)学法:观察、思考、交流、讨论、概括。(2)实物模型、投影仪四、 教学过程 :一、 创设情景,揭示课题1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态?2. 提问:小学与初中在平面上研究过哪些几何图形?在空间范围上研究过哪些?3. 导入:进入高中,在必修的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算. 二、讲授新课:1. 教学棱柱、棱锥的结构特征: 提问:举例生活中有哪些实
3、例给我们以两个面平行的形象? 讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有学习必备欢迎下载哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征? 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱. 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽). 结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线. 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等. 表示:棱柱ABCDE-A B C D E 讨论:埃及金字塔具有什么几何特征? 定义:有一个面是多边形,其余各面都是有一个公共顶点
4、的三角形,由这些面所围成的几何体叫棱锥. 结合图形认识:底面、侧面、侧棱、顶点、高. 讨论:棱锥如何分类及表示? 讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.2. 教学圆柱、圆锥的结构特征: 讨论:圆柱、圆锥如何形成? 定义: 以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成
5、的几何体叫圆锥. 列举生活中的棱柱实例结合图形认识:底面、轴、侧面、母线、 高. 表示方法 讨论:棱柱与圆柱、棱柱与棱锥的共同特征? 柱体、锥体 . 观察书 P2 若干图形,找出相应几何体;举例:生活中的柱体、锥体. 3. 质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。1有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)2棱柱的何两个平面都可以作为棱柱的底面吗?3课本 P8,习题 1.1 A 组第 1 题。4圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?5棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?3. 小
6、结: 几何图形;相关概念;相关性质;生活实例四、巩固深化学习必备欢迎下载练习:课本P7 练习 1、2(1) (2)课本 P8 习题 1.1 第 2、3、4 题五、归纳整理由学生整理学习了哪些内容六、布置作业课本 P8 练习题 1.1 B组第 1 题课外练习课本 P8 习题 1.1 B组第 2 题七、板书设计1.1.1柱、锥、台、球的结构特征( 一) 棱柱的结构特征例 1 棱锥的结构特征练习棱台的结构特征小结八、课后反思学习必备欢迎下载1.1.1 柱、锥、台、球的结构特征(二)一、教学目标1知识与技能(1)通过实物操作,增强学生的直观感知。(2)能根据几何结构特征对空间物体进行分类。(3)会用语
7、言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。(4)会表示有关于几何体以及柱、锥、台的分类。2过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。(2)让学生观察、讨论、归纳、概括所学的知识。3情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。(2)培养学生的空间想象能力和抽象括能力。二、教学重点:让学生感受大量空间实物及模型,概括出台体、球体的结构特征. 教学难点 :柱、锥、台、球的结构特征的概括. 三、教学用具(1)学法:观察、思考、交流、讨论、概括。(2)实物模型、投影仪四、教学过程:
8、(一)复习准备:1. 结合棱柱、棱锥、圆柱、圆锥的几何图形,说出:定义、分类、表示、2. 结合棱柱、棱锥、圆柱、圆锥的几何图形,说出各几何体的一些几何性质?(二)讲授新课:1. 教学棱台与圆台的结构特征: 讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征? 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台. 列举生活中的实例结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高 . 讨论:棱台的分类及表示?圆台的表示?圆台可如何旋转而得? 讨论:棱台、圆台分别具有一些什么几何性质?棱台: 两底面
9、所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面学习必备欢迎下载是梯形;侧棱的延长线相交于一点. 圆台: 两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等. 讨论:棱、圆与柱、锥、台的组合得到6 个几何体 . 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系?(以台体的上底面变化为线索)2教学球体的结构特征: 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体. 列举生活中的实例结合图形认识:球心、半径、直径. 球的表示 . 讨论:球有一些什么几何性质? 讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什
10、么共性?(多面体)3. 教学简单组合体的结构特征: 讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢? 定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体. 列举生活中的实例4. 练习 :圆锥底面半径为cm,高为2cm,其中有一个内接正方体,求这个内接正方体的棱长. (补充平行线分线段成比例定理)三、巩固练习:1. 练习:书P8 A 组 14 题. 2. 已知长方体的长、宽、高之比为4312,对角线长为26cm, 则长、宽、高分别为多少?3. 棱台的上、下底面积分别是25 和 81,高为 4,求截得这棱台的原棱锥的高4. 若棱长均相等的三棱锥叫正四面体,求棱长为a 的正四面体的高.四、课堂
11、小结学习了柱、锥、台、球的定义、表示;性质;分类. 五、作业布置课本 P9 习题 2、3 补充:观察身边有哪些事物具有柱、台、锥、球的结构特征?六、板书设计1.1.1柱、锥、台、球的结构特征( 一) 棱柱的结构特征例 1 棱锥的结构特征练习棱台的结构特征小结七、课后反思学习必备欢迎下载1.2.1 空间几何体的三视图( 1 课时)一、教学目标1知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。3情感态度与价值观(1)提高学生空间想象力(2)体会三视图的作用二、教学重点、难点重点:画出简单组合体的三视图难点:识别三视
12、图所表示的空间几何体三、学法与教学用具1学法:观察、动手实践、讨论、类比2教学用具:实物模型、三角板四、教学思路(一)创设情景,揭开课题1. 引入:从不同角度看庐山,有古诗:“横看成岭侧成峰,远近高低各不同。不识庐山真面目, 只缘身在此山中。 ” 对于我们所学几何体,常用三视图和直观图来画在纸上 . “横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同, 要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图) ,什么叫三视图?你能画出空间几何体的三视图吗?三视图:
13、观察者从不同位置观察同一个几何体,画出的空间几何体的图形;2. 讨论: 能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?我们这节课来进一步学习空间几何体特别是简易组合体的三视图。二、讲授新课:1. 教学中心投影与平行投影: 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将学习必备欢迎下载这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。 中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形. 平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影. 讨论:点、线、三角形在平行投影后的
14、结果. 2. 教学柱、锥、台、球的三视图:定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右) 、俯视图讨论:三视图与平面图形的关系? 画出长方体的三视图,并讨论所反应的长、宽、高结合球、 圆柱、 圆锥的模型, 从正面 (自前而后) 、侧面(自左而右)、上面(自上而下) 三个角度, 分别观察, 画出观察得出的各种结果. 正视图、 侧视图、俯视图 . 试画出:棱柱、棱锥、棱台、圆台的三视图. 讨论: 三视图, 分别反应物体的哪些关系(上下、 左右、 前后)?哪些数量 (长、宽、高)正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置
15、关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 讨论:根据以上的三视图,如何逆向得到几何体的形状. (试变化以上的三视图,说出相应几何体的摆放)3. 教学简单组合体的三视图: 画出教材P16 图( 2) 、 (3) 、(4)的三视图 . 从教材 P16 思考中三视图,说出几何体. 4三视图与几何体之间的相互转化。(1)投影出示图片(课本P10,图 1.2-3 )请同学们思考图中的三视图表示的几何体是什么?(2)你能画出圆台的三视图吗?(3)三视图对于认识空间几何体有何作用?你有何体会?教师巡视指导, 解答学生在学习中遇到的困难,然后让学生发表对
16、上述问题的看法。5请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。三、巩固练习学习必备欢迎下载课本 P12 练习 1、2 P18 习题 1.2 A 组 1 四、归纳整理小结 :投影法;三视图;顺与逆五、课外练习1自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。2自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。六、作业布置: 练习:教材P17 1、2、3、 4 补充 1、 画出正四棱锥的三视图. 2、画出右图所示几何体的三视图. 3、 右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状.
17、 七、板书设计1.2.1 中心投影与平行投影122 空间几何体的三视图(1 课时)中心投影与平行投影例 1 三视图练习 1、2 八、课后反思学习必备欢迎下载1.2.3 空间几何体的直观图( 1 课时)一、教学目标1知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图。(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。2过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。3情感态度与价值观(1)提高空间想象力与直观感受。(2)体会对比在学习中的作用。(3)感受几何作图在生产活动中的应用。二、教学重点、难点重点、难点:用斜二测画法画空间
18、几何值的直观图。三、学法与教学用具1学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。2教学用具:三角板、圆规四、教学思路(一)新课导入:1. 提问:何为三视图?(正视图:自前而后;侧视图:自左而右;俯视图:自上而下)2. 讨论:如何在平面上画出空间图形?3. 引入:定义直观图(表示空间图形的平面图)(直观图:观察者站在某一点观察几何体,画出的空间几何体的图形). 把空间图形画在平面内,画得既富有立体感,又能表达出图形各主要部分的位置关系和度量关系的图形,怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。二、讲授新课:1. 教学水平放置的平面图形的斜二测画法:如何
19、画水平放置的平面图形的直观图?例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己学习必备欢迎下载的见解, 教师及时给予点评。画水平放置的多边形的直观图的关键是确定多边形顶点的位置, 因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。 给出斜二测画法规则:建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX ,OY ,建立直角坐标系;画出斜坐标系,在画直观图的纸上(平面上)画出对应的OX,OY, 使X OY=450(或 1350) ,
20、它们确定的平面表示水平平面;画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y轴,且长度变为原来的一半;擦去辅助线,图画好后,要擦去X轴、 Y轴及为画图添加的辅助线(虚线)。 出示例 1 用斜二测画法画水平放置的正六边形. (师生共练,注意取点、变与不变 小结:画法步骤) 练习:用斜二测画法画水平放置的正五边形. 讨论:水平放置的圆如何画?(正等测画法;椭圆模板)例 2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1 进行比较, 与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代
21、表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。教师组织学生思考、讨论和交流, 如何构造出需要的一些点,与学生共同完成例 2 并详细板书画法。2. 教学空间图形的斜二测画法: 讨论:如何用斜二测画法画空间图形?例 3, 用斜二测画法画长、 宽、 高分别是 4cm、 3cm、 2cm的长方体 ABCD-A BCD的直观图。教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。(师生共练,建系取点连线,注意变与不变;小结:画法步骤)投影出示几何体的三视图、课本P15 图 1.2-9 ,请说出三视图表示的几何体?并用斜二测画法画出它的直观
22、图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。讨论:几何体的结构特征?基本数据如何反应?师生共练:用斜二测画法画图,注意正确把握图形尺寸大小的关系 讨论:如何由三视图得到直观图?又如何由直观图得到三视图?学习必备欢迎下载空间几何体的三视图与直观图有密切联系. 三视图从细节上刻画了空间几何体的结构,根据三视图可以得到一个精确的空间几何体,得到广泛应用(零件图纸、建筑图纸) . 直观图是对空间几何体的整体刻画,根据直观图的结构想象实物的形象. 三、巩固练习:1. 练习: P21 15 题2. 右图是一个几何体的三视图,请作出其直观图. 3.
23、 画出一个正四棱台的直观图. 尺寸:上、下底面边长2cm 、4cm; 高 3cm4.作业: P23 4、6、7 5巩固练习,课本P16练习 1(1) , 2,3,4 三、归纳整理学生回顾斜二测画法的关键与步骤四、作业1书画作业,课本P17 练习第 5 题2课外思考课本 P16,探究( 1) ( 2)五、板书设计1.2.3 空间几何体的直观图直观图画法:斜二测画法例题六、课后反思学习必备欢迎下载1.3.1 柱体、锥体、台体的表面积与体积一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。(2)能运用公式求解,柱体、锥体和台体的全面积,并且熟悉台体与术体和
24、锥体之间的转换关系。(3)培养学生空间想象能力和思维能力。2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状。(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。从而增强学习的积极性。二、教学重点、难点重点:柱体、锥体、台体的表面积计算难点:台体面积公式的推导三、学法与教学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标。2、教学用具:实物几何体,投影仪四、教学设想教学过程 :二、讲授新课:
25、1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流, 教师归类。正方体、长方体的侧面展开图?正方体、长方体的表面积计算公式?圆柱、圆锥的侧面展开图? 圆柱的侧面积公式?圆锥的侧面积公式?(2)教师设疑:几何体的表面积等于它的展开图的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。2、探究新知(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图学习必备欢迎下载(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求?(展开成平面图形,各
26、面面积和)(3)教师对学生讨论归纳的结果进行点评。练习: 1)求各面都是边长为10 的等边三角形的正四面体S-ABC 的表面积 . 2)一个三棱柱的底面是正三角形,边长为4,侧棱与底面垂直,侧棱长10,求其表面积 . 3、质疑答辩、排难解惑、发展思维讨论:如何求圆柱、圆锥、圆台的侧面积及表面积?(图侧表)圆柱 :侧面展开图是矩形,长是圆柱底面圆周长,宽是圆柱的高 (母线),S圆柱侧=2rl,S圆柱表=2()r rl,其中为r圆柱底面半径,l为母线长。圆锥 :侧面展开图为一个扇形,半径是圆锥的母线,弧长等于圆锥底面周长,侧面展开图扇形中心角为0360rl,S圆锥侧=rl, S圆锥表=()r rl
27、,其中为r圆锥底面半径,l为母线长。圆台 :侧面展开图是扇环,内弧长等于圆台上底周长,外弧长等于圆台下底周长,侧面展开图扇环中心角为0360rrl,S圆台侧=()rr l,)22rllrrrS(圆台表面积r1为上底半径 r为下底半径 l为母线长练习:一个圆台,上、下底面半径分别为10、20,母线与底面的夹角为60,求圆台的表面积. (变式:求切割之前的圆锥的表面积)(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式: (2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。4. 教学表面积公式的实际应用: 出示例:一圆台形花盆,盘口直径20cm
28、,盘底直径15cm,底部渗水圆孔直径1.5cm,盘壁长15cm. 为美化外表而涂油漆,若每平方米用100 毫升油漆,涂200个这样的花盘要多少油漆?讨论:油漆位置?如何求花盆外壁表面积?列式 计算 变式训练:内外涂 练习:粉碎机的上料斗是正四棱台性,它的上、下底面边长分别为80mm、学习必备欢迎下载440mm,高是 200mm, 计算制造这样一个下料斗所需铁板的面积. 3. 小结 :表面积公式及推导;实际应用问题三、巩固练习:1. 已知底面为正方形,侧棱长均是边长为5 的正三角形的四棱锥S-ABCD ,求其表面积 . 2. 圆台的上下两个底面半径为10、20, 平行于底面的截面把圆台侧面分成的
29、两部分面积之比为1: 1,求截面的半径. (变式: r、R;比为 p:q)3. 若一个圆锥的轴截面是等边三角形,其面积为3,求这个圆锥的表面积. *4. 圆锥的底面半径为2cm,高为 4cm,求圆锥的内接圆柱的侧面积的最大值. 5. 面积为 2 的菱形,绕其一边旋转一周所得几何体的表面积是多少?四、作业布置:P30 2、P32 习题 1、2 题. 五、板书设计1.3.1柱体、锥体、台体的表面积与体积柱体的表面积公式例题锥体的表面积公式台体的表面积公式六、课后反思学习必备欢迎下载1.3.1 柱体、锥体、台体的表面积与体积(二)一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、
30、台的表面积和体积的求法。(2)能运用公式求解,柱体、锥体和台体的全面积,并且熟悉台体与术体和锥体之间的转换关系。(3)培养学生空间想象能力和思维能力。2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状。(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。从而增强学习的积极性。教学重点 :运用公式解决问题. 教学难点 :理解计算公式之间的关系. 教学过程 :一、复习准备:1. 提问:圆柱、圆锥、圆台的表面积计算公式?2. 练习:正六棱锥的侧棱长为6, 底面边长为4, 求其表面
31、积 . 3. 提问:正方体、长方体、圆柱、圆锥的体积计算公式?二、讲授新课:1. 教学柱锥台的体积计算公式: 讨论:等底、等高的棱柱、圆柱的体积关系?(祖暅(g ng,祖冲之的儿子)原理,教材 P34) 根据正方体、长方体、圆柱的体积公式,推测柱体的体积计算公式?给出柱体体积计算公式:VSh柱( S 为底面面积,h 为柱体的高)2VShr h圆柱 讨论: 等底、 等高的圆柱与圆锥之间的体积关系?等底等高的圆锥、棱锥之间的体积关系? 根据圆锥的体积公式公式,推测锥体的体积计算公式?给出锥体的体积计算公式:13VSh锥S为底面面积,h 为高) 讨论:台体的上底面积S ,下底面积S,高 h,由此如何
32、计算切割前的锥体的高? 如何计算台体的体积? 给出台体的体积公式:1()3VSS SS h台(S,S分别上、下底面积,h为高)学习必备欢迎下载2211()()33VSSSS hrrRRh圆台( r、R 分别为圆台上底、下底半径)2教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解。如图:3教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系。从锥、台、柱的形状可以看出,当台体上底缩为一点时,台成为锥;当台体上底放大为与下底相同时,台成为柱。 因此只要分别令S =S 和 S =0 便可以从台体的体积公式得到柱、锥的相应公式
33、。从而锥、柱的公式可以统一为台体的体积公式(s ,s 分别我上下底面面积,h 为台柱高 )讨论:侧面积公式是否也正确?圆柱、圆锥、圆台的侧面积和体积公式又可如何统一?4、例题分析讲解(课本)例1、例 2、例 3 5、巩固深化、反馈矫正教师投影练习1)已知圆锥的表面积为 a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为。(答案:ma332)2)棱台的两个底面面积分别是245c 和 80, 截得这个棱台的棱锥的高为 35cm,求这个棱台的体积。(答案: 2325cm3)6. 教学体积公式计算的运用: 出示例:一堆铁制六角螺帽,共重11.6kg, 底面六边形边长12mm,内空直径10mm,高
34、 10mm,估算这堆螺帽多少个?(铁的密度7.8g/cm3)讨论:六角螺帽的几何结构特征? 如何求其体积? 利用哪些数量关系求个数? 列式计算 小结:体积计算公式 练习:将若干毫升水倒入底面半径为2cm 的圆柱形容器中,量得水面高度为 6cm;若将这些水倒入轴截面是正三角形的倒圆锥形容器中,求水面的高度7、课堂小结本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式。学习必备欢迎下载用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握。8、作业布置习题 1.3 A组 1.3 补充:1. 把三棱锥的高分成三等分,过这些分点且平行于三棱锥底面的平面,把三棱锥分成三部分
35、,求这三部分自上而下的体积之比。2. 已知圆锥的侧面积是底面积的2 倍,它的轴截面的面积为4,求圆锥的体积. *3. 高为 12cm 的圆台,它的中截面面积为225cm2,体积为2800cm3,求它的侧面积。4. 仓库一角有谷一堆,呈1/4 圆锥形,量得底面弧长2.8m,母线长2.2m,这堆谷多重? 720kg/m3三、板书设计1.3.1柱体、锥体、台体的表面积与体积柱体的体积公式例题锥体的体积公式台体的体积公式四、课后反思学习必备欢迎下载1.3.2 球的体积和表面积一. 教学目标 知识与技能通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法: “分割求和化为准确和”,有利于
36、同学们进一步学习微积分和近代数学知识。能运用球的面积和体积公式灵活解决实际问题。培养学生的空间思维能力和空间想象能力。 过程与方法通过球的体积和面积公式的推导,从而得到一种推导球体积公式34R3和面积公式R2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想。 情感与价值观通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。二 . 教学重点、难点重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。难点:推导体积和面积公式中空间想象能力的形成。三 . 学法和教学用具 学法:学生
37、通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。 教学用具:投影仪四 . 教学设计(一)创设情景教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考。教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式。(二)探究新知1球的体积:如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片” 的体积的体积之和正好是球的体积,由于“小圆片” 近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的
38、体积有也近似于相应的圆柱和体学习必备欢迎下载积,因此求球的体积可以按“分割求和化为准确和”的方法来进行。步骤:第一步:分割如图:把半球的垂直于底面的半径作n 等分,过这些等分点,用一组平行于底面的平面把半球切割成n 个“小圆片”, “小圆片”厚度近似为nR,底面是“小圆片”的底面。如图:得)1()1(1232nininRnRrVii、第二步:求和6)2)(1(1113321nnnRvvvv半球第三步:化为准确的和当 n时,n10 (同学们讨论得出)所以3332)6211(RR半球得到定理:半径是的球的体积334R球练习:一种空心钢球的质量是142g, 外径是5cm,求它的内径 ( 钢的密度是7
39、.9g/cm3) 2球的表面积:球的表面积是球的表面大小的度量, 它也是球半径R 的函数 , 由于球面是不可展的曲面 , 所以不能像推导圆柱、圆锥的表面积公式那样推导球的表面积公式,所以仍然用“分割、求近似和,再由近似和转化为准确和”方法推导。思考:推导过程是以什么量作为等量变换的?半径为 R的球的表面积为 R2练习:长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是。 (答案 50 元)(三)典例分析课本 P47例 4 和 P29例 5 学习必备欢迎下载(四)巩固深化、反馈矫正 正方 形的 内切 球和 外接 球的 体积 的比 为,表 面积比为。( 答 案 :1:33;3 :1)在球心同侧有相距9cm 的两个平行截面,它们的面积分别为49cm2和400cm2,求球的表面积。(答案: 2500cm2)(五)课堂小结本节课主要学习了球的体积和球的表面积公式的推导,以及利用公式解决相关的球的问题,了解了推导中的“分割、求近似和,再由近似和转化为准确和”的解题方法。(六)作业设计作业 P30练习 1、3 ,B(1)五、板书设计1.3.1秋的表面积与体积球的表面积公式例题球的体积公式分析:可画出球的轴截面,利用球的截面性质求球的半径
限制150内