高中数学全套教案(新人教A版).pdf
《高中数学全套教案(新人教A版).pdf》由会员分享,可在线阅读,更多相关《高中数学全套教案(新人教A版).pdf(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载第一章三角函数1.1 任意角和弧度制1.1.1任意角一、 教学目标:1、知识与技能(1)推广角的概念、引入大于360角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4) 掌握所有与角终边相同的角(包括角)的表示方法; ( 5)树立运动变化观点,深刻理解推广后的角的概念;( 6)揭示知识背景,引发学生学习兴趣. (7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识. 2、过程与方法通过创设情境: “转体720,逆(顺)时针旋转” ,角有大于360角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以
2、后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习. 3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物. 二、教学重、难点重点 : 理解正角、负角和零角的定义,掌握终边相同角的表示法. 难点 : 终边相同的角的表示. 三、学法与教学用具之前的学习使我们知道最大的角是周角, 最小的角是零角. 通过回忆和观察日常生活中实际例
3、子, 把对角的理解进行了推广. 把角放入坐标系环境中以后, 了解象限角的概念. 通过角终边的旋转掌握终边相同角的表示方法. 我们在学习这部分内容时, 首先要弄清楚角的表示符号, 以及正负角的表示. 另外还有相同终边角的集合的表示等. 教学用具 : 电脑、投影机、三角板四、教学设想【创设情境】思考 : 你的手表慢了5 分钟,你是怎样将它校准的?假如你的手表快了1.25 小时,你应当如何将它校准?当时间校准以后,分针转了多少度? 取出一个钟表,实际操作 我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上 , 这就是说角已不仅仅局限于0360之间,这正是我们这节课要研究的主要
4、内容任意角. 【探究新知】1初中时,我们已学习了0360角的概念,它是如何定义的呢? 展示投影 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 如图1.1-1 ,一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角. 旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫的顶点 . 2. 如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720” (即转体 2 周) , “转体1080” (即转体3 周)等 , 都是遇到大于360的角以及按不同方向旋转而成的角. 同学们思考一下 : 能否再举出几个现实生活中
5、“大于360的角或按不同方向旋转而成的角”的例子 , 这些说明了什么问题 ?又该如何区分和表示这些角呢? 学习必备欢迎下载 展示课件 如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定: 按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转, 我们称它形成了一个零角(zero angle). 展示课件 如教材图1.1.3(1)中的角是一个正角, 它等于750;图 1.1.3(2)中,正角210,负角150 ,660;这样,
6、我们就把角的概念推广到了任意角(any angle ), 包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角”或“”可简记为. 3. 在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念. 角的顶点与原点重合,角的始边与x轴的非负半轴重合。那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角(quadrant angle).如教材图1.1-4中的30角、210角分别是第一象限角和第三象限角. 要特别注意 :如果角的终边在坐标轴上, 就认为这个角不属于任何一个象限, 称为非象限角 . 4. 展示投影 练习 : (1)( 口答 ) 锐角是第几象限角?
7、第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题. (2)( 回答 ) 今天是星期三那么7 ()k kZ天后的那一天是星期几? 7 ()k kZ天前的那一天是星期几?100 天后的那一天是星期几? 5. 探究 : 将角按上述方法放在直角坐标系中后, 给定一个角 , 就有唯一的一条终边与之对应. 反之 , 对于直角坐标系中任意一条射线OB( 如图1.1-5),以它为终边的角是否唯一?如果不惟一 , 那么终边相同的角有什么关系 ?请结合 4.(2)口答加以分析 . 展示课件 不难发现 , 在教材图1.1-5中 , 如果32的终边是OB, 那么328 , 392角的终边都是OB,而3283
8、21 360,39232( 1) 360. 设|32360 ,SkkZ, 则328 , 392角都是S的元素 ,32角也是S的元素 . 因此 ,所有与32角终边相同的角, 连同32角在内 , 都是集合S的元素;反过来,集合S的任一元素显然与32角终边相同 . 一般地 , 我们有 : 所有与角终边相同的角, 连同角在内 , 可构成一个集合|360 ,SkkZ, 即任一与角终边相同的角, 都可以表示成角与整数个周角的和. 6. 展示投影 例题讲评例 1. 例 1 在0360范围内,找出与950 12角终边相同的角,并判定它是第几象限角. (注:0360是指0360)例 2. 写出终边在y轴上的角的
9、集合. 例 3. 写出终边直线在yx上的角的集合S, 并把S中适合不等式360720的元素写出来 . 7. 展示投影 练习学习必备欢迎下载教材6P第 3、4、 5 题 . 注意 : ( 1)kZ; (2)是任意角(正角、负角、零角); (3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360的整数倍 . 8. 学习小结(1)你知道角是如何推广的吗? (2)象限角是如何定义的呢? (3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直线yx上的角的集合 . 五、评价设计1作业:习题1.1 A 组第 1,2,3题2多举出一些日常生活中的“大于36
10、0的角和负角”的例子,熟练掌握他们的表示,进一步理解具有相同终边的角的特点1.1.2弧度制一、教学目标:1、知识与技能(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;( 3)掌握并运用弧度制表示的弧长公式、扇形面积公式; (4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集R之间建立的一一对应关系 .(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系. 2、过程与方法创设情境 , 引入弧度制度量角的大小, 通过探究理解并掌握弧度制的定义, 领会定义的合理性. 根据弧度制的定义推导并运用弧长公式和扇形面积公式
11、. 以具体的实例学习角度制与弧度制的互化, 能正确使用计算器 . 3、情态与价值通过本节的学习,使同学们掌握另一种度量角的单位制-弧度制, 理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下 ,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应; 反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备 . 二、教学重、难点重点 : 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用. 难点 : 理解弧度制定义,弧度
12、制的运用. 三、学法与教学用具在我们所掌握的知识中,知道角的度量是用角度制,但是为了以后的学习,我们引入了弧度制的概念,我们一定要准确理解弧度制的定义,在理解定义的基础上熟练掌握角度制与弧度制的互化. 教学用具 : 计算器、投影机、三角板四、教学设想【创设情境】有人问:海口到三亚有多远时,有人回答约250 公里,但也有人回答约160 英里,请问那一种回答是正确的?(已知1 英里 =1.6 公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制. 他们的长度单位是不同的,但是,他们之间可以换算:1 英里 =1.6 公里 . 在角度的度量里
13、面,也有类似的情况,一个是角度制,我们已经不再陌生, 另外一个就是我们这节课要研究的角的另外一种度量制- 弧度制 . 学习必备欢迎下载【探究新知】1角度制规定:将一个圆周分成360 份,每一份叫做1 度,故一周等于360 度,平角等于180 度,直角等于90 度等等 . 弧度制是什么呢?1 弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本67PP,自行解决上述问题. 2. 弧度制的定义 展示投影 长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad,或 1 弧度,或 1( 单位可以省略不写 ). 3. 探究 : 如图 , 半径为r的圆的圆心与
14、原点重合, 角的终边与x轴的正半轴重合, 交圆于点A, 终边与圆交于点B. 请完成表格 . 弧AB的长OB旋转的方向AOB的弧度数AOB的度数r逆时针方向2 r逆时针方向r12r20180180我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如- , -2 等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0, 角的正负主要由角的旋转方向来决定. 4. 思考 : 如果一个半径为r的圆的圆心角所对的弧长是l, 那么a的弧度数是多少? 角的弧度数的绝对值是:rl,其中, l 是圆心角所对的弧长,r是半径 . 5. 根据探究中180rad填空 : 1_rad,1
15、_rad度显然 , 我们可以由此角度与弧度的换算了. 6. 例题讲解例 1. 按照下列要求, 把67 30化成弧度 : (1) 精确值;(2) 精确到 0.001 的近似值 . 例 2. 将 3.14rad换算成角度 ( 用度数表示 , 精确到 0.001). 注意 : 角度制与弧度制的换算主要抓住180rad, 另外注意计算器计算非特殊角的方法. 7. 填写特殊角的度数与弧度数的对应表: 度03045120120120120弧度3232角的概念推广以后,在弧度制下 ,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数 (即这个角的弧度数)与它对应;反过来,每一个实数也都有
16、唯一的一个角(即弧度数等于这个yxAOB学习必备欢迎下载实数的角)与它对应. 8. 例题讲评例 3. 利用弧度制证明下列关于扇形的公式: (1)lR; (2)212SR; (3)12SlR. 其中R是半径 ,l是弧长 ,(02 )为圆心角 ,S是扇形的面积. 例 4. 利用计算器比较sin1.5和sin85的大小 . 注意 : 弧度制定义的理解与应用, 以及角度与弧度的区别. 9. 练习教材10P. 9. 学习小结(1) 你知道角弧度制是怎样规定的吗? (2) 弧度制与角度制有何不同, 你能熟练做到它们相互间的转化吗? 五、评价设计1作业:习题1.1 A 组第 7,8,9题2要熟练掌握弧度制与
17、角度制间的换算, 以及异同能够使用计算器求某角的各三角函数值1.2.1任意角的三角函数( 一) 一、教学目标:1、知识与技能(1)掌握任意角的正弦、余弦、 正切的定义 (包括这三种三角函数的定义域和函数值在各象限的符号);( 2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;(5)树立映射观点,正确理解三角函数是以实数为自变量的函数. 2、过程与方法初中学过 : 锐角三角函数就是以锐角为自变量, 以比值为函数值的函数. 引导学生把这个定义推广到任意角 , 通过单位
18、圆和角的终边, 探讨任意角的三角函数值的求法, 最终得到任意角三角函数的定义. 根据角终边所在位置不同, 分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号. 最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习. 3、情态与价值任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点. 过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集
19、到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解. 本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数. 这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系. 二、教学重、难点重点 : 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);学习必备欢迎下载终边相同的角的同一三角函数值相等(公式一). 难点 : 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解. 三、学法与教学用
20、具任意角的三角函数可以有不同的定义方法,本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数 . 表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系. 另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加紧密,这就为后续内容的学习带来方便,也使三角函数更加好用了. 教学用具 : 投影机、三角板、圆规、计算器四、教学设想第一课时任意角的三角函数(一)【创设情境】提问:锐角O的正弦、余弦、正切怎样表示?借助右图直角三角形,复习回顾. 引入:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。数, 你能用直角坐标系中角的终边上点的坐标来表示锐角三
21、角函数吗? 如图 , 设锐角的顶点与原点O重合 , 始边与x轴的正半轴重合, 那( , )P a b,么 它的 终边 在第 一象限. 在的 终边 上任 取一 点它与原点的距离220rab. 过P作x轴的垂线 , 垂足为M, 则线段OM的长度为a, 线段MP的长度为b.则sinMPbOPr; cosOMaOPr; tanMPbOMa. P在思考:对于确定的角,这三个比值是否会随点的终边上的位置的改变而改变呢?显然,我们可以将点取在使线段OP的长1r的特殊位置上, 这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sinMPbOP; cosOMaOP; tanMPbOMa. 思考: 上述锐角
22、的三角函数值可以用终边上一点的坐标表示. 那么 , 角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题任意角的三角函数. 【探究新知】1. 探究 : 结合上述锐角的三角函数值的求法, 我们应如何求解任意角的三角函数值呢? 显然 , 我们只需在角的终边上找到一个点, 使这个点到原点的距离为1, 然后就可以类似锐角求得该角的三角函数值了. 所以 , 我们在此引入单位圆的定义: 在直角坐标系中, 我们称以原点O为圆心 , 以单位长度为半径的圆 . 2. 思考 : 如何利用单位圆定义任意角的三角函数的定义? 如图 , 设是一个任意角, 它的终边与单位
23、圆交于点( , )P x y, 那么 : (1)y叫做的正弦 (sine),记做sin, 即siny;y P ( a,b)r O M a的终边P(x,yO x y 学习必备欢迎下载(2)x叫做的余弦 (cossine),记做cos, 即cosx;(3)yx叫做的正切 (tangent),记做tan, 即tan(0)yxx. 注意 : 当是锐角时,此定义与初中定义相同(指出对边,邻边,斜边所在);当 不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点( ,)P x y,从而就必然能够最终算出三角函数值. 3. 思考 : 如果知道角终边上一点, 而这个点不是终边
24、与单位圆的交点, 该如何求它的三角函数值呢? 前面我们已经知道, 三角函数的值与点P在终边上的位置无关,仅与角的大小有关. 我们只需计算点到原点的距离22rxy, 那么22sinyxy,22cosxxy, tanyx. 所以,三角函数是以为自变量, 以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数. 4. 例题讲评例 1. 求53的正弦、余弦和正切值. 例 2已知角的终边过点0( 3, 4)P,求角的正弦、余弦和正切值. 教材给出这两个例题,主要是帮助理解任意角的三角函数定义. 我也可以尝试其他方法: 如例 2
25、: 设3,4,xy则22( 3)( 4)5r. 于是4sin5yr,3cos5xr,4tan3yx. 5. 巩固练习17P第 1,2,3题6. 探究 : 请根据任意角的三角函数定义, 将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:三角函数定义域第一象限第二象限第三象限第四象限角度制弧度制sincostan7例题讲评例 3求证:当且仅当不等式组sin0tan0成立时,角为第三象限角. 8. 思考 : 根据三角函数的定义, 终边相同的角的同一三角函数值有和关系? 显然 : 终边相同的角的同一三角函数值相等.即有公式一 : sin(2)sinkcos(2)co
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 全套 教案 新人
限制150内