《项目七-调光台灯电路的制作与调试.doc》由会员分享,可在线阅读,更多相关《项目七-调光台灯电路的制作与调试.doc(57页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date项目七-调光台灯电路的制作与调试项目七 可控整流 电路的制作与调试项目七 调光台灯电路的制作与调试学习目标(1)了解晶闸管的基本结构、工作原理、特性曲线和主要参数。(2)能识别常用晶闸管,能对晶闸管进行简单的检测。(3)了解单相可控整流电路的可控原理和整流电压与电流的波形。(4)了解单结晶体管及触发电路的工作原理。(5)会制作调光台灯电路(6)会用相关仪器仪表对调光电
2、路进行调试与测量。工作任务(1) 识别检测晶闸管。(2) 制作单结晶体管触发电路。(3) 制作家用调光台灯,并选择仪器仪表对电路进行调试和检测。模块一 单相可控整流电路的识读任务一 晶闸管的识别与检测看一看单向晶闸管的结构与符号晶体闸流管又名可控硅,简称晶闸管。是在晶体管基础上发展起来的一种大功率半导体器件。它的出现使半导体器件由弱电领域扩展到强电领域。晶闸管也像半导体二极管那样具有单向导电性,但它的导通时间是可控的,主要用于整流、逆变、调压及开关等方面。晶闸管外形如图7-1-1所示,有小型塑封型(小功率)、平面型(中功率)和螺栓型(中、大功率)几种。单向晶闸管的内部结构如图7-1-2(a)所
3、示,它是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分另为阳极A、阴极K和门极G。单向晶闸管的阳极与阴极之间具有单向导电的性能,其内部可以等效为由一只PNP三极管和一只NPN三极管组成的复合管,如图7-1-2(b)所示。图7-1-3是其电路图形符号。做一做单向晶闸管工作条件测试1、测试电路 T T T TS S S SHL HL HL HLGKAGKAGKAGKA (a) (b) (c) (d)图7-1-3 晶闸管导通试验2、测试步骤(1)如图7-1-3(a)所示电路中,晶闸管加正向电压,即晶闸管阳极接电源正极,阴极接电源负极。开关S不闭合,观察灯泡的状态。灯_(亮、不亮)。(2)
4、如图7-1-3(b)所示的电路中,晶闸管加正向电压,且开关S闭合。观察灯泡的状态。灯_(亮、不亮);再将开关打开,如图7-1-3(c)灯_(亮、不亮)。(3)如图7-1-3(d)所示电路中,晶闸管加反向电压,即晶闸管阳极接电源负极,阴极接电源正极。将开关闭合,灯_(亮、不亮);开关S不闭合,灯_(亮、不亮)。实验总结:晶闸管导通必须具备的条件是:_。读一读晶闸管的工作特性1、晶闸管的工作原理(1)正向阻断状态 当晶闸管的阳极A和阴极K 之间加正向电压而控制极不加电压时,管子不导通,称为正向阻断状态。(2)触发导通状态 当晶闸管的阳极A和阴极K之间加正向电压且控制极和阴极之间也加正向电压时,如图
5、7-1-2(b)若VT2管的基极电流为IB2,则其集电极电流为IC2; VT1管的基极电流IB1 等于VT2管的集电极电流IC2,因而VT1管的集电极电流IC1为IC2;该电流又作为VT2管的基极电流,再一次进行上述放大过程,形成正反馈。在很短的时间内(一般不超过几微秒),两只管子均进入饱和状态,使晶闸管完全导通,这个过程称为触发导通过程。当它导通后,控制极就失去控制作用,管子依靠内部的正反馈始终维持导通状态。此时阳极和阴极之间的电压一般为0.61.2V,电源电压几乎全部加在负载电阻上;阳极电流I可达几十几千安。 (3)正向关断 使阳极电流IF减小到小于一定数值IH,导致晶闸管不能维持正反馈过
6、程而变为关断,这种关断称为正向关断,IH称为维持电流;如果在阳极和阴极之间加反向电压,晶闸管也将关断,这种关断称为反向关断。因此,晶闸管的导通条件为:在阳极和阴极间加电压,同时在控制极和阴极间加正向触发电压。其关断方法为:减小阳极电流或改变阳极与阴极的极性。2、晶闸管的型号及主要参数图7-1-4 KP系列参数表示方式 图7-1-5 3CT系列参数表示方式为了正确地选择和使用晶闸管,还必须了解它的电压、电流等主要参数的意义。晶闸管的主要参数有以下几项:1额定正向平均电流IF在规定的散热条件和环境温度及全导通的条件下,晶闸管可以连续通过的工频正弦半波电流在一个周期内的平均值,称为正向平均电流IF,
7、例如50A晶闸管就是指IF值为50A。然而,这个电流值并不是一成不变的,晶闸管允许通过的最大工作电流还受冷却条件、环境温度、元件导通角、元件每个周期的导电次数等因素的影响。工作中,阳极电流不能超过额定值,以免PN结的结温过高,使晶闸管烧坏。2维持电流IH在规定的环境温度和控制极断开情况下,维持晶闸管导通状态的最小电流称维持电流。在产品中,即使同一型号的晶闸管,维持电流也各不相同,通常由实测决定。当正向工作电流小于IH时,晶闸管自动关断。3正向阻断峰值电压VDRM在控制极断路和晶闸管正向阻断的条件下,可以重复加在晶闸管两端的最大正向峰值电压,用VDRM表示。使用时若电压超过,则晶闸管即使不加触发
8、电压也能从正向阻断转为导通。4反向峰值电压VRRM在控制极断开时,可以重复加在晶闸管两端的反向峰值电压,用VRRM表示。5控制极触发电压VG和电流IG在晶闸管的阳极和阴极之间加6V直流正向电压后,能使晶闸管完全导通所必须的最小控制极电压和控制极电流。6浪涌电流IFSM在规定时间内,晶闸管中允许通过的最大正向过载电流,此电流应不致使晶闸管的结温过高而损坏。在元件的寿命期内,浪涌的次数有一定的限制。做一做 晶闸管的简易检测对于晶闸管的三个电极,可以用万用表粗测其好坏。依据PN结单向导电原理,用万用表欧姆挡测试元件三个电极之间的阻值,可初步判断管子是否完好。如用万用表R1 k 挡测量阳极A和阴极K之
9、间的正、反向电阻都很大,在几百千欧以上,且正、反向电阻相差很小;用R10或R100挡测量控制极G和阴极K之间的阻值,其正向电阻应小于或接近于反向电阻,这样的晶闸管是好的。如果阳极与阴极或阳极与控制极间有短路,阴极与控制极间为短路或断路,则晶闸管是坏的。 用万用电表 R1K档分别测量A K、A G间正、反向电阻;用R10 档测量G K间正、反向电阻,记入表7-11。 表7-11RAK(K)RKA(K)RAG(K)RGA(K)RGK(K)RKG(K)结论任务二 识读单相可控整流电路oov2o vovG 2 3ttt(a)电路图RLbTvGav2b+vo-iFio(b)波形图图7-1-6 单相半波可
10、控整流电路与波形读一读一、单相半波可控整流电路1电路组成单相半波可控整流电路如图7-1-6(a)所示。它与单相半波整流电路相比较,所不同的只是用晶闸管代替了整流二极管。 2工作原理接上电源,在电压v2正半周开始时,如果电路中a点为正,b点为负,对应在图7-1-6(b)的角范围内。此时晶闸管T两端具有正向电压,但是由于晶闸管的控制极上没有触发电压vG,因此晶闸管不能导通。 经过角度后,在晶闸管的控制极上加上触发电压vG,如图7-1-6(b)所示。晶闸管T被触发导通,负载电阻中开始有电流通过,在负载两端出现电压vo。在T导通期间,晶闸管压降近似为零。 这角称为控制角(又称移相角),是晶闸管阳极从开
11、始承受正向电压到出现触发电压vG之间的角度。改变角度,就能调节输出平均电压的大小。角的变化范围称为移相范围,通常要求移相范围越大越好。经过以后,v2进入负半周,此时电路a端为负,b端为正,晶闸管T两端承受反向电压而截止,所以io = 0,vo = 0。在第二个周期出现时,重复以上过程。晶闸管导通的角度称为导通角,用表示。由7-1-6 (b)可知,=-。 3输出平均电压当变压器次级电压为时,负载电阻RL上的直流平均电压可以用控制角表示,即 (7-1-1)从(7-1-1)看出,当= 0时(=)晶闸管在正半周全导通,Vo = 0.45V2,输出电压最高,相当于不控二极管单相半波整流电压。若=, Vo
12、 = 0, 这时= 0,晶闸管全关断。根据欧姆定律,负载电阻RL中的直流平均电流为 (7-1-2)此电流即为通过晶闸管的平均电流。例7-1-1 在单相半波可控整流电路中,负载电阻为8,交流电压有效值V2=220V,控制角的调节范围为6001800,求:(1) 直流输出电压的调节范围。(2) 晶闸管中最大的平均电流。(3) 晶闸管两端出现的最大反向电压。 解:(1)控制角为600时,由式(7-1-1)得出直流输出电压最大值 V控制角为1800时得直流输出电压为零。所以控制角在6001800范围变化时,相对应的直流输出电压在74.25V0V之间调节。(2) 晶闸管最大的平均电流与负载电阻中最大的平
13、均电流相等,由式(7-1-2)得 (3) 晶闸管两端出现的最大反向电压为变压器次级电压的最大值V再考虑到安全系数23倍,所以选择额定电压为600V以上的晶闸管。4.电感性负载和续流二极管电感性负载可用电感元件L和电阻元件R串联表示,如图7-1-7所示。晶闸管触发导通时, 电感元件中存贮了磁场能量, 当v2过零变负时,电感中产生感应电势,晶闸管不能及时关断,造成晶闸管的失控,为了防止这种现象的发生,必须采取相应措施。图7-1-7具有电感性负载的单相半波可控整流电路ioiDRLLDTv2通常是在负载两端并联二极管D(图7-1-7虚线)来解决。当交流电压v2过零值变负时,感应电动势eL产生的电流可以
14、通过这个二极管形成回路。因此这个二极管称为续流二极管。这时D的两端电压近似为零,晶闸管因承受反向电压而关断。有了续流二极管以后,输出电压D的波形就和电阻性负载时一样。值得注意的是,续流二极管的方向不能接反,否则将引起短路事故。二、单相桥式半控整流电路1. 电路组成单相桥式半控整流电路如图7-1-8 (a)所示。其主电路与单相桥式整流电路相比,只是其中两个桥臂中的二极管被晶闸管T1、T2所取代。baioT2D2vG主电路voRLD1v2T1触发电路3T1D1 T2D2 T1D1导通 导通 导通2oVovGv2ttt(a)电路图 (b)波形图图7-1-8 单相桥式半控整流电路与波形 2. 工作原理
15、接上交流电源后,在变压器副边电压v2正半周时(a端为正,b端为负),T1、D1、处于正向电压作用下,当t=时,控制极引入的触发脉冲vG使T1导通,电流的通路为:aT1RLD1b,这时T2和D2均承受反向电压而阻断。在电源电压v2过零时,T1阻断,电流为零。同理在v2的负半周(a端为负,b端为正),T2、D2处于正向电压作用下,当t=+时,控制极引入的触发脉冲vG使T2导通,电流的通路为:bT2RLD2a,这时T1、D1承受反向电压而阻断。当v2由负值过零时,T2阻断。可见,无论v2在正或负半周内,流过负载RL的电流方向是相同的,其负载两端的电压波形如图7-1-8(b)所示。由图7-1-8 (b
16、)可知,输出电压平均值比单相半波可控整流大一倍。即 (7-1-3)从(7-1-3)看出,当= 0时(=)晶闸管在半周内全导通,Vo = 0.9V2,输出电压最高,相当于不可控二极管单相桥式整流电压。若=, Vo = 0, 这时= 0,晶闸管全关断。根据欧姆定律,负载电阻RL中的直流平均电流为 (7-1-4)流经晶闸管和二极管的平均电流为 (7-1-5)晶闸管和二极管承受的最高反向电压均为。综上所述,可控整流电路是通过改变控制角的大小实现调节输出电压大小的目的,因此,也称为相控制整流电路。三、晶闸管的保护晶闸管的主要缺点是承受过电压、过电流的能力较弱。当晶闸管承受过电压过电流时,晶闸管温度会急剧
17、上升,可能烧坏PN结,造成元件内部短路或开路。为了使元件能可靠地长期运行,必须对电路中的晶闸管采取保护措施。1、晶闸管的过电流保护产生过电流的原因通常有负载短路、过载、误触发等。晶闸管的过电流保护方法有:快速熔断器保护,灵敏继电器保护,过载截止保护等。其中快速熔断器保护应用最为广泛,下面介绍这种保护方法。FU3FU2FU2FU1RLD2D1T2T1图7-1-9 快速熔断器在电路中的位置普通熔断器的熔体熔断时间比晶闸管过电流损坏时间长得多,因此很难对晶闸管进行过电流保护。而快速熔断器熔体的熔断时间通常极短。过电流越大;它的熔断速度就越快,因此,能在晶闸管损坏之前,有效地将过电流的电路切断。快速熔
18、断器在电路中的位置有三种,如图7-1-9所示。其一是熔断器串联在可控整流电路的交流侧(如图7-1-9中的FUl)。 这种联接方法的保护范围较大,但是熔断器熔断之后,不能立即判断出是什么故障。其二是熔断器与晶闸管串联(如图7-1-9中的FU2)。这种联接方法能对晶闸管元件进行可靠地过电流保护。其三是熔断器与直流负载RL串联(如图7-1-9中的FU3)。这种联接方法能在负载短路或过载时进行有效保护。在选择熔体时,要注意熔体的额定电流是指有效值,而晶闸管的额定电流是指正弦半波的平均值,因此在选择快速熔断器的熔体时,必须进行换算。例如控制角为零时,50Hz的正弦半波电流有效值是它的平均值的1.57倍,
19、当晶闸管电流为100A时,配用的熔体额定电流应为150A。2、晶闸管的过电压保护LC3R3C1R1C2C2R2R2RLD2D1T2T1图7-1-10 阻容保护在电路中的位置如果可控整流电路中含有电感元件,则在开关拉闸,电感负载切除,晶闸管由导通到阻断等时候,都可能引起晶闸管的过电压,使晶闸管损坏。晶闸管的过电压保护方法有,阻容吸收保护,硒堆保护等。其中阻容吸收保护的应用最为广泛,下面介绍这种保护方法。阻容吸收保护是利用阻容元件来吸收过电压,其实质就是将过电压的能量转换成电容器中的电场能量,同时在转换过程中又把一部分能量消耗在电路的电阻上。由于电容器两端电压不会突变,从而使晶闸管在电路中免受过电
20、压的影响。除此以外,阻容吸收保护还具有抑制LC回路振荡的作用。阻容吸收元件在电路中的位置有三种, 如图7-1-10所示。它可以并联在交流侧(如图7-1-10中C1R1)、并联在晶闸管元件侧(如图7-1-10C2R2)或并联在电感负载侧(如图7-1-10中C3R3)。模块二 单结晶管振荡电路的制作与调试任务一 单结晶体管的识别与检测读一读欲使晶闸管导通,它的控制极上必须加上触发电压vG,产生触发电压vG的电路称为触发电路。触发电路种类繁多,各具特色。本节主要介绍用单结晶体管组成的触发电路。一、 单结晶体管它的外形与普通三极管相似,具有三个电极,但不是三极管,而是具有三个电极的二极管,管内只有一个
21、PN结,所以称之为单结晶体管。三个电极中,一个是发射极,两个是基极,所以也称为双基极二极管。 1. 结构与符号其结构如图7-2-1(a)所示。它有三个电极,但在结构上只有一个PN结。有发射极E,第一基极B1和第二基极B2,其符号见图7-2-1(b)。2. 伏安特性单结晶体管的等效电路如图7-2-1(c)所示,两基极间的电阻为RBB = RB1 + RB2,用D表示PN结。RBB的阻值范围为215K之间。如果在Bl、B2两个基极间加上电压VBB,则A与Bl之间即RB1两端得到的电压为 (7-2-1)式中称为分压比,它与管子的结构有关,一般在0.30.8之间,是单结晶体管的主要参数之一。EB2EP
22、N结B1NPEB1B2VDARB1RB2B1B2EDVBB(a)结构示意图 (b)符号 (c)结构等效电路图7-2-1 单结晶体管IEVEBTEBREEEEB1B2mAV截止区 负阻区 饱和区VP PVIEIVVVa IP单结晶体管的伏安特性是指它的发射极电压VE 与流入发射极电流IE之间的关系。图7-2-1(a)是测量伏安特性的实验电路,在B2、Bl间加上固定电源EB,获得正向电压VBB并将可调直流电源EE通过限流电阻RE接在E和Bl之间。(a)测试电路 (b)伏安特性图7-2-2 单结晶体管伏安特性当外加电压VEVBB+VD时(VD为PN结正向压降),PN结承受反向电压而截止,故发射极回路
23、只有微安级的反向电流,单结晶体管子处于截止区,如图7-2-2(b)的aP段所示。 在VE =VBB+VD时,对应于图7-2-2(b)中的P点,该点的电压和电流分别称为峰点电压VP和峰点电流IP。由于PN结承受了正向电压而导通,此后RB1 急剧减小,VE随之下降,IE迅速增大,单结晶体管呈现负阻特性,负阻区如图7-2-2 (b)中的PV段所示。V点的电压和电流分别称为谷点电压VV和谷点电流IV。过了谷点以后,IE继续增大,VE略有上升,但变化不大,此时单结晶体管进入饱状态,图中对应于谷点V以右的特性,称为饱和区。当发射极电压减小到VEVV时,单结晶体管由导通恢复到截止状态。综上所述,峰点电压VP
24、是单结晶体管由截止转向导通的临界点。 (7-2-2)所以,VP由分压比和电源电压决定VBB。谷点电压VV是单结晶体管由导通转向截止的临界点。一般VV = 25V(VBB = 20V)。国产单结晶体管的型号有BT31、BT32、BT33等。BT表示半导体特种管,3表示三个电极,第四个数字表示耗散功率分别为100、200、300mW。做一做单结晶体管的检测图7-23为单结晶体管BT33管脚排列、结构图及电路符号。好的单结晶体管PN结正向电阻REB1、REB2均较小,且REB1稍大于REB2,PN结的反向电阻RB1E、RB2E均应很大,根据所测阻值,即可判断出各管脚及管子的质量优劣。用万用电表R10
25、档分别测量EB1、EB2间正、反向电阻,记入表72-1表7-21REB1()REB2()RB1E(K)RB2E(K)结 论任务二 单结晶体管振荡电路制作与调试读一读-RR2SBTC+ER1B2B1vG充电 放电ovGttVPoVEt1 t2VV利用单结晶体管的负阻特性和RC电路的充放电特性,可组成单结晶体管振荡电路,其基本电路如图7-2-4所示。(a)电路图 (b)波形图图7-2-4 单结晶体管振荡电路当合上开关S接通电源后,将通过电阻R向电容C充电(设C上的起始电压为零),电容两端电压vC按= RC的指数曲线逐渐增加。当vC 升高至单结晶体管的峰点电压VP时,单结晶体管由截止变为导通,电容向
26、电阻R1放电,由于单结晶体管的负阻特性,且R1又是一个50100的小电阻,电容C的放电时间常数很小,放电速度很快,于是在R1上输出一个尖脉冲电压vG。在电容的放电过程中,vE急剧下降,当vEVV(谷点电压)时,单结晶体管便跳变到截止区,输出电压vG降到零,即完成一次振荡。放电一结束,电容又开始重新充电并重复上述过程,结果在C上形成锯齿波电压,而在R1上得到一个周期性的尖脉冲输出电压vG,如图7-2-4 (b)所示。调节R(或变换C)以改变充电的速度,从而调节图7-2-4 (b)中的t1时刻,如果把vG接到晶闸管的控制极上,就可以改变控制角的大小。做一做1、电路如图7-2-5所示图7-2-5单结
27、晶体管振荡电路2、仪器仪表双踪示波器 一台 MF47万用表 1只3、制作调试步骤 (1)将元器件按要求整形,插入通用电路板的相应位置,并连接好导线。(2)闭合开关,接通电源。分别用示波器观察电容C两端电压vc及电路输出电压vo。在图7-2-6相应坐标中作出vc、vo波形。(3)调节电路中电位器阻值,观察两波形变化,可以看出,改变电位器阻值将改变输出脉冲的_(相位、频率、幅值)。图7-2-6 vc、vo波形图模块三 调光台灯电路的制作与调试任务一 调光台灯电路的识读读一读调光电路的组成与工作原理1、 调光电路的原理图图7-3-1家用调光台灯电路如图7-3-1所示电路中,VT、R1、R2、R3、R
28、4、RP、C组成单结晶体管张弛振荡器。接通电源前,电容器C上电压为零。接通电源后,电容经由R4、RP充电,电压VE逐渐升高。当达到峰点电压时,E-b1间导通,电容上电压向电阻放电。当电容上的电压降到谷点电压时,单结晶体管恢复阻断状态。此后,电容又重新充电,重复上述过程,结果在电容上形成锯齿状电压,在电阻R3上则形成脉冲电压。此脉冲电压作为晶闸管V5的触发信号。在V1V4桥式整流输出的每一个半波时间内,振荡器产生的第一个脉冲为有效触发信号。调节RP的阻值,可改变触发脉冲的相位,控制晶闸管V5的导通角,调节灯泡亮度。任务二 家用调光台灯电路的制作与调试看一看1、 按材料清单清点元器件(见表 7-3
29、-1)表 7-3-1元 件名称规格数量V1V4二极管IN40074V5晶闸管3CT1VT单结晶体管BT331R1电阻器51k1R2电阻器3001R3电阻器1001R4电阻器18k1Rp带开关电位470k器1C涤纶电容器0.022F1HL灯泡220V25W1灯座1电源线1导线若干印制板13、对照原理图(见图 7-3-1)看懂装配图(见图7-3-2),将图上的电路符号与实物对照。4、检查印制板看是否有开路、短路、隐患。图7-3-2 调光台灯电路装配图图7-3-3 调光台灯电路元器件布局图图7-3-4调光台灯电路印制版图做一做调光台灯电路的制作与调试一、装接前的准备1、用万用表测试各元件的主要参数,
30、及时更换存在质量的元器件。2、将所有元器件引脚上的漆膜、氧化膜清除干净,对导线进行搪锡。3、根据要求对各元器件进行整形。二、装接1、有极性的元器件二极管、晶闸管、单结晶体管等,在安装时要注意极性,切勿装错。2、所有元器件尽量贴近线路板安装。3、带开关电位器要用螺母固定在印制板开关的孔上,电位器用导线连接到线路板的所在位置。4、印制板四周用螺母固定支撑。三、调试1、检查电路连接是否正确,确保无误后方可接上灯泡,开始调试。调试过程中应注意安全,防止触电。2、接通电源,打开开关,旋转电位器手柄,观察灯泡亮度变化。3、在下面几种情况下测量电路中各点电压,并填入表7-3-1中。表7-3-1灯 泡 状 态
31、元器件各点电压断开交流电源,电位器的电阻值V5VTVAVKVGVB1VB2VE灯泡最亮时灯泡微亮时灯泡不亮时思考与习题7-1 晶闸管导通的条件是什么?晶闸管导通后,通过管子阳极的电流大小由哪些因素决定?已经导通的晶闸管在什么条件下才能从导通转为截止?7-2 晶闸管是否有放大作用?它与晶体三极管的放大有何不同?7-3简述用万用表判别晶闸管元件的步骤和方法?7-4 在单项半控桥式可控整流电路中,输入电压为交流220V,负载电阻为20。试求:(1)=60时,输出电压平均值U0和电流平均值I0,并选择可控硅和二极管。(2) 画出io电流io以及可控硅两端电 压uSCR波形。7-5 有一电阻性负载,需要直流电压60V,电流30A。采用单相可控半波整流电路,由电网220V电压供电,试计算晶闸管的导通角、电流的有效值以及管子承受的最大正反向电压。u2RLUSCR1D1USCR2D2Uoiou2tUgt=30USCR!tUSCR2tUotiouo7-6在单相半控桥式可控整流电路中,输入电压U2为220V,负载电阻RL为10,试求(1)=30时,输出电压平均值和电流平均值;(2)画出输出电压uo,输出电流io以及可控硅两端电压uSCR波形-
限制150内