人教A版高中数学必修5第二章2.3 等差数列的前n项和教案.doc
《人教A版高中数学必修5第二章2.3 等差数列的前n项和教案.doc》由会员分享,可在线阅读,更多相关《人教A版高中数学必修5第二章2.3 等差数列的前n项和教案.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高一数学集体备课教案 课题等差数列的前n项和课型:新课课时2教学目标知识与能力过程与方法情感态度与价值观1、知识与技能:(1)掌握等差数列前n项和公式及其获取思路;会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题;(2)了解等差数列的一些性质,并会用它们解决一些相关问题;(3)会利用等差数列通项公式与前n项和的公式研究Sn的最值。2、过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题、解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平。3、情感态度与价值观:通过公式的推导过
2、程,展现数学中的对称美,通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。内容分析教学重点难点教学重点 熟练掌握等差数列的求和公式.教学难点 灵活应用求和公式解决问题.教法学法合作探究教学教具学具教材 实例素材教学过程教材处理二次备课第一课时 导入新课高斯是伟大的数学家、天文学家,高斯十岁时,有一次老师出了一道题目,老师说:“现在给大家出道题目:1+2+100=?”过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10算得不亦乐乎时,高斯站起来回答说: “1+2+3+100=5 050.”教师问:“你
3、是如何算出答案的?”高斯回答说:因为1+100=101;2+99=101;50+51=101,所以10150=5 050.师 这个故事告诉我们什么信息?高斯是采用了什么方法来巧妙地计算出来的呢?生 高斯用的是首尾配对相加的方法.也就是:1+100=2+99=3+98=50+51=101,有50个101,所以1+2+3+100=50101=5 050.师 对,高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,每组数的和均相等,都等于101,50个101就等于5 050了.高斯算法将加法问题转化为乘法运算,迅速
4、准确得到了结果。作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西.师 问:数列1,2,3,100是什么数列?而求这一百个数的和1+2+3+100相当于什么?生 这个数列是等差数列,1+2+3+100这个式子实质上是求这数列的前100项的和.师 对,这节课我们就来研究等差数列的前n项的和的问题.(二)、推进新课合作探究 师 我们再回到前面的印度泰姬陵的陵寝中的等边三角形图案中,在图中我们取下第1层到第21层,得到右图,则图中第1层到第21层一共有多少颗宝石呢?生 这是求“1+2+3+21”奇数个项的和的问题,高斯的方法不能用了.要是偶数项的数求和
5、就好首尾配成对了.师 高斯的这种“首尾配对”的算法还得分奇、偶个项的情况求和,适用于偶数个项,我们是否有简单的方法来解决这个问题呢?生 有!我用几何的方法,将这个全等三角形倒置,与原图补成平行四边形.平行四边形中的每行宝石的个数均为22个,共21行.则三角形中的宝石个数就是.师 妙得很!这种方法不需分奇、偶个项的情况就可以求和,真是太好了!我将他的几何法写成式子就是:1+2+3+21, 21+20+19+1,对齐相加(其中下第二行的式子与第一行的式子恰好是倒序)这实质上就是我们数学中一种求和的重要方法“倒序相加法”.现在我将求和问题一般化:(1)求1到n的正整数之和,即求1+2+3+(n-1)
6、+n.(注:这问题在前面思路的引导下可由学生轻松解决)(2)如何求等差数列an的前n项的和Sn?生1 对于问题(2),我这样来求:因为Sn=a1+a2+a3+an,Sn=an+an-1+a2+a1,再将两式相加,因为有等差数列的通项的性质:若m+n=p+q,则am+an=ap+aq,所以.()生2 对于问题(2),我是这样来求的:因为Sn=a1+(a1+d)+(a1+2d)+(a1+3d)+a1+(n-1)d,所以Sn=na1+1+2+3+(n-1)d=na1+d,即Sn=na1+ d.()教师精讲其中公式()是基本的,我们可以发现,它可与梯形面积公式(上底+下底)高2相类比,这里的上底是等差
7、数列的首项a1,下底是第n项an,高是项数n,有利于我们的记忆.方法引导师 如果已知等差数列的首项a1,项数为n,第n项为an,则求这数列的前n项和用公式()来进行,若已知首项a1,项数为n,公差d,则求这数列的前n项和用公式()来进行.引导学生总结:这些公式中出现了几个量?生 每个公式中都是5个量.师 如果我们用方程思想去看这两个求和公式,你会有何种想法?生 已知其中的三个变量,可利用构造方程或方程组求另外两个变量(知三求二).师 当公差d0时,等差数列an的前n项和Sn可表示为n的不含常数项的二次函数,且这二次函数的二次项系数的2倍就是公差.知识应用【例1】 (直接代公式)计算:(1)1+
8、2+3+n;(2)1+3+5+(2n-1);(3)2+4+6+2n;(4)1-2+3-4+5-6+(2n-1)-2n.(让学生迅速熟悉公式,即用基本量观点认识公式)请同学们先完成(1)(3),并请一位同学回答.生 (1)1+2+3+n=;(2)1+3+5+(2n-1)= =n2;(3)2+4+6+2n= =n(n+1).师 第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?(小组讨论后,让学生发言解答)生 (4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以原式= 1+3+5+(2n-1)-(2+4+6+2n)=n2-n(
9、n+1)=-n.生 上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:原式=(-1)+(-1)+(-1)+(-1)=-n.师 很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法.注意在运用求和公式时,要看清等差数列的项数,否则会引起错解.【例2】 (课本例1)分析:这是一道实际应用题目,同学们先认真阅读此题,理解题意.你能发现其中的一些有用信息吗?生 由题意我发现了等差数列的模型,这个等差数列的首项是500,记为a1,公差为50,记为d,而从2001年到2010年应为十年,所以这个等差数列的项数为10.再用公式就可以算出来了.师 这位同学说得很对,下面我们来完成此
10、题的解答.(按课本解答示范格式)【例3】 (课本例2)已知一个等差数列的前10项的和是310,前20项的和是1 220,由此可以确定求其前n项和的公式吗?分析:若要确定其前n项求和公式,则必须确定什么?生 必须要确定首项a1与公差d.师 首项与公差现在都未知,那么应如何来确定?生 由已知条件,我们已知了这个等差数列中的S10与S20,于是可从中获得两个关于a1和d的关系式,组成方程组便可从中求得.(解答见课本)师 通过上面例题3我们发现了在以上两个公式中,有5个变量.已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二).运用方程思想来解决问题.合作探究师 请同学们阅读课本例3,阅读后
11、我们来互相进行交流.(给出一定的时间让学生对本题加以理解)师 本题是给出了一个数列的前n项和的式子,来判断它是否是等差数列.解题的出发点是什么?生 从所给的和的公式出发去求出通项.师 对的,通项与前n项的和公式有何种关系?生 当n=1时,a1=S1,而当n1时,an=Sn-Sn-1.师 回答的真好!由Sn的定义可知,当n=1时,S1=a1;当n2时,an=Sn-S n-1,即an=S1(n=1),Sn-S n-1(n2).这种已知数列的Sn来确定数列通项的方法对任意数列都是可行的.本题用这方法求出的通项an=2n-,我们从中知它是等差数列,这时当n=1也是满足的,但是不是所有已知Sn求an的问
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教A版高中数学必修5第二章2.3 等差数列的前n项和教案 人教 高中数学 必修 第二 2.3 等差数列 教案
限制150内