机器人学基础第4章机器人动力学蔡自兴ppt课件.ppt





《机器人学基础第4章机器人动力学蔡自兴ppt课件.ppt》由会员分享,可在线阅读,更多相关《机器人学基础第4章机器人动力学蔡自兴ppt课件.ppt(51页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1中南大学中南大学蔡自兴,谢蔡自兴,谢 斌斌zxcai, 2010机器人学基础机器人学基础第四章第四章 机器人动力学机器人动力学1Fundamentals of Robotics2Contents Introduction to Dynamics Rigid Body Dynamics Lagrangian Formulation Newton-Euler Formulation Articulated Multi-Body Dynamics2Ch.4 Manipulator Dynamics3 3Ch.4 Manipulator DynamicsIntroductionCh.4 Manipu
2、lator DynamicsManipulator Dynamics considers the forces required to cause desired motion. Considering the equations of motion arises from torques applied by the actuators, or from external forces applied to the manipulator.4Ch.4 Manipulator DynamicsTwo methods for formulating dynamics model:Newton-E
3、uler dynamic formulationNewtons equation along with its rotational analog, Eulers equation, describe how forces, inertias, and accelerations relate for rigid bodies, is a force balance approach to dynamics.Lagrangian dynamic formulationLagrangian formulation is an energy-based approach to dynamics.
4、Ch.4 Manipulator Dynamics5Ch.4 Manipulator DynamicsThere are two problems related to the dynamics of a manipulator that we wish to solve. Forward Dynamics: given a torque vector, , calculate the resulting motion of the manipulator, . This is useful for simulating the manipulator.Inverse Dynamics: gi
5、ven a trajectory point, , find the required vector of joint torques, . This formulation of dynamics is useful for the problem of controlling the manipulator.Ch.4 Manipulator Dynamics, and ,and 6Contents Introduction to Dynamics Rigid Body Dynamics Lagrangian Formulation Newton-Euler Formulation Arti
6、culated Multi-Body Dynamics6Ch.4 Manipulator Dynamics7 74.1 Dynamics of a Rigid Body 刚体动力学刚体动力学Langrangian Function L is defined as:Dynamic Equation of the system (Langrangian Equation): where qi is the generalized coordinates, represent corresponding velocity, Fi stand for corresponding torque or f
7、orce on the ith coordinate. 4.1 Dynamics of a Rigid BodyLPKniqLqLdtdiii, 2 , 1, F(4.1)(4.2)iq Kinetic EnergyPotential Energy84.1.1 Kinetic and Potential Energy of a Rigid Body82211001122KMMxx0011201)(21gxgxxxMMkP2101()2Dcxx01FxFx W图4.1 一般物体的动能与位能4.1 Dynamics of a Rigid Body4.1 Dynamics of a Rigid Bo
8、dy9 9 is a generalized coordinate Kinetic Energy due to (angular) velocity Kinetic Energy due to position (or angle) Dissipation Energy due to (angular) velocity Potential Energy due to position External Force or Torque010,xx11111xWxPxDxKxKdtd4.1.1 Kinetic and Potential Energy of a Rigid Body4.1 Dyn
9、amics of a Rigid Body 1010 x0 and x1 are both generalized coordinatesFgxxxxx1010111)()(MkcM Fgxxxxx0010100)()(MkcM 1111000000McckkMcckkxxxFxxxF4.1.1 Kinetic and Potential Energy of a Rigid Body4.1 Dynamics of a Rigid BodyWritten in Matrices form:1111Kinetic and Potential Energy of a 2-links manipula
10、tor Kinetic Energy K1 and Potential Energy P1 of link 1 211 111 11111111,cos2KmvvdPm ghhd 22111111111,cos2Km dPm gd 图4.2 二连杆机器手(1)4.1.1 Kinetic and Potential Energy of a Rigid Body4.1 Dynamics of a Rigid Body1212Kinetic Energy K2 and Potential Energy P2 of link 2 222222211212211212sinsincoscosvxyxdd
11、ydd 2222221,2Km vPmgywhere222222211221221221122211221211cos22coscosKm dm dm d dPm gdm gd 4.1.1 Kinetic and Potential Energy of a Rigid Body4.1 Dynamics of a Rigid Body13Total Kinetic and Potential Energy of a 2-links manipulator are13(4.3)21KKK2222121122122212211211()()22cos()mm dm dm d d 21PPP)cos(
12、cos)(21221121gdmgdmm(4.4)4.1.1 Kinetic and Potential Energy of a Rigid Body4.1 Dynamics of a Rigid Body14Contents Introduction to Dynamics Rigid Body Dynamics Lagrangian Formulation Newton-Euler Formulation Articulated Multi-Body Dynamics14Ch.4 Manipulator Dynamics1515Lagrangian Formulation Lagrangi
13、an Function L of a 2-links manipulator: PKL)2(21)(21222121222212121dmdmm)cos(cos)()(cos2122112121212212gdmgdmmddm(4.5)niqLqLdtdiii, 2 , 1, F4.1 Dynamics of a Rigid Body4.1.2 Two Solutions for Dynamic Equation16164.1.2 Two Solutions for Dynamic EquationLagrangian Formulation Dynamic Equations:2112212
14、212121211122221222211122111212221121121DDDDDDDDDDDDDDTT (4.10)111dLLTdt222dLLTdtWritten in Matrices Form:(4.6)(4.7)有效惯量(effective inertial):关节i的加速度在关节i上产生的惯性力4.1 Dynamics of a Rigid Body17Written in Matrices Form:17Lagrangian Formulation Dynamic Equations:21122122121212111222212222111221112122211211
15、21DDDDDDDDDDDDDDTT (4.10)111dLLTdt222dLLTdt(4.6)(4.7)耦合惯量(coupled inertial):关节i,j的加速度在关节j,i上产生的惯性力4.1.2 Two Solutions for Dynamic Equation4.1 Dynamics of a Rigid Body18Written in Matrices Form:18Lagrangian Formulation Dynamic Equations:2112212212121211122221222211122111212221121121DDDDDDDDDDDDDDTT (
16、4.10)111dLLTdt222dLLTdt(4.6)(4.7)向心加速度(acceleration centripetal)系数关节i,j的速度在关节j,i上产生的向心力4.1.2 Two Solutions for Dynamic Equation4.1 Dynamics of a Rigid Body19Written in Matrices Form:19Lagrangian Formulation Dynamic Equations:2112212212121211122221222211122111212221121121DDDDDDDDDDDDDDTT (4.10)111dLL
17、Tdt222dLLTdt(4.6)(4.7)哥氏加速度(Coriolis accelaration)系数:关节j,k的速度引起的在关节i上产生的哥氏力(Coriolis force)4.1.2 Two Solutions for Dynamic Equation4.1 Dynamics of a Rigid Body20Written in Matrices Form:20Lagrangian Formulation Dynamic Equations:2112212212121211122221222211122111212221121121DDDDDDDDDDDDDDTT (4.10)11
18、1dLLTdt222dLLTdt(4.6)(4.7)重力项(gravity):关节i,j处的重力4.1.2 Two Solutions for Dynamic Equation4.1 Dynamics of a Rigid Body2121对上例指定一些数字,以估计此二连杆机械手在静止和固定重力负载下的 T1 和 T2 的数值。取 d1=d2=1,m1=2,计算m2=1,4和100(分别表示机械手在地面空载地面空载、地面满载地面满载和在外空间负在外空间负载载的三种不同情况;在外空间由于失重而允许有较大的负载)三个不同数值下各系数的数值。Lagrangian Formulation of Man
19、ipulator Dynamics4.1 Dynamics of a Rigid Body2222表4.1给出这些系数值及其与位置 的关系。 表4.1 222cos11D12D22D1I2I负载地面空载09018027010-1064242101111164242323地面满载09018027010-1018102108404444418102102626外空间负载09018027010-1040220222022001000100100100100100402202220221022102Lagrangian Formulation of Manipulator Dynamics注意:有效惯
20、量的变化将对机械手的控制产生显著影响!4.1 Dynamics of a Rigid Body23Contents Introduction to Dynamics Rigid Body Dynamics Lagrangian Formulation Newton-Euler Formulation Articulated Multi-Body Dynamics23Ch.4 Manipulator Dynamics24Fm a4.1 Dynamics of a Rigid Body4.1.2 Two Solutions for Dynamic EquationNewton-Euler Dyna
21、mic FormulationNewtons Lawrate of change of the linear momentum is equal to the applied forcedmvFdtLinear Momentummv25pviiiim4.1 Dynamics of a Rigid Body4.1.2 Two Solutions for Dynamic EquationNewton-Euler Dynamic FormulationRotational MotionppiiiimAngular Momentum:densityimdv26I4.1 Dynamics of a Ri
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机器人学 基础 机器人 动力学 ppt 课件

限制150内