《动力学基本方程ppt课件.ppt》由会员分享,可在线阅读,更多相关《动力学基本方程ppt课件.ppt(73页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 动力学是研究物体机械运动状态的变化与动力学是研究物体机械运动状态的变化与作用于物体上的力之间的关系的一门学科,将作用于物体上的力之间的关系的一门学科,将物体的运动和力加以统一考虑,研究机械运动物体的运动和力加以统一考虑,研究机械运动所具有的普遍规律。所具有的普遍规律。静力学静力学只研究物体的力系的合成与平衡问题,只研究物体的力系的合成与平衡问题, 不考虑其运动,即不考虑力系的不平不考虑其运动,即不考虑力系的不平 衡状态。衡状态。运动学运动学只研究物体作机械运动的几何特征,只研究物体作机械运动的几何特征, 只考虑了运动,不考虑引起物体机械只考虑了运动,不考虑引起物体机械 运动状态发生变化的原因
2、,即不考虑运动状态发生变化的原因,即不考虑 物体的受力状况。物体的受力状况。动力学动力学既研究物体上受力的情况,也需考虑既研究物体上受力的情况,也需考虑 其运动,静力学和运动学都是动力学其运动,静力学和运动学都是动力学 的基础。的基础。 事实上,各种物体之间的机械运动状态的事实上,各种物体之间的机械运动状态的变化与物体的的存在着极为密切的联系而不可变化与物体的的存在着极为密切的联系而不可分离,所以单纯只研究受力和研究运动都不能分离,所以单纯只研究受力和研究运动都不能对机械运动作出合理的研究,必须同时将力与对机械运动作出合理的研究,必须同时将力与运动联系起来,加以统一研究,所以学习动力运动联系起
3、来,加以统一研究,所以学习动力学就更具有重要性;学就更具有重要性; (1) (1) 已知运动求力:(主要是指求约束反力)已知运动求力:(主要是指求约束反力) 例如:曲柄滑块机构,其运动规律可以求得,例如:曲柄滑块机构,其运动规律可以求得,或者首先设计出来,故作用在滑块上的蒸汽压力或者首先设计出来,故作用在滑块上的蒸汽压力应按一定的要求变化。应按一定的要求变化。(2 2)已知力求运动)已知力求运动 如发射炮弹,飞机航行等受力已知,但发射如发射炮弹,飞机航行等受力已知,但发射炮弹要控制弹道曲线,飞机航行要控制运行的轨炮弹要控制弹道曲线,飞机航行要控制运行的轨迹等,这就要求控制运动。迹等,这就要求控
4、制运动。 又如起重机吊重,起步与制动时,作又如起重机吊重,起步与制动时,作加速运动,运行过程中作匀速运动,所以加速运动,运行过程中作匀速运动,所以在起步和制动过程中,要考虑由加速和减在起步和制动过程中,要考虑由加速和减速引起的力,钢绳是否能承受这个力,这速引起的力,钢绳是否能承受这个力,这就是已知运动要求力的问题。就是已知运动要求力的问题。(1)(1)质点质点 在所讨论的问题中,其大小及形状在所讨论的问题中,其大小及形状可以忽略不计,但要求考虑质量的点称为质点。可以忽略不计,但要求考虑质量的点称为质点。(2)(2)质点系质点系 在运动中,相互靠一定的联系而联在运动中,相互靠一定的联系而联接在一
5、起的一群质点,如曲柄连杆机构中,接在一起的一群质点,如曲柄连杆机构中,曲柄,连杆及滑块都个为一质点,整体为一曲柄,连杆及滑块都个为一质点,整体为一质点系。质点系。第一定律:牛顿第一定律(第一定律:牛顿第一定律() 任何物体都保持其静止的和匀速直线运动任何物体都保持其静止的和匀速直线运动的状态,直至它受到其它物体的作用而被迫改的状态,直至它受到其它物体的作用而被迫改变这种状态时为止。变这种状态时为止。 (这里所说的物体应理解为没有转动或其(这里所说的物体应理解为没有转动或其转动可以不计的平动物体,即质点)转动可以不计的平动物体,即质点) 任何物体在不受力作用时都有保持其任何物体在不受力作用时都有
6、保持其运动状态不变的属性,物体的运动这一运动属运动状态不变的属性,物体的运动这一运动属性称为惯性。性称为惯性。第一定律正是指出了这种属性,所以又叫惯性第一定律正是指出了这种属性,所以又叫惯性定律。定律。物体的匀速直线运动就称为惯性物体的匀速直线运动就称为惯性 运动。运动。 研究机械运动首先应建立参照坐标系,研究机械运动首先应建立参照坐标系,物体运动的状况是随所选的参照坐标系的不同物体运动的状况是随所选的参照坐标系的不同而不同的,因此必然会出现这样一种现象:而不同的,因此必然会出现这样一种现象: 即对某一参考系而言是作惯性运动的物体即对某一参考系而言是作惯性运动的物体对另一参照系来说却作变速运动
7、,但物体及其对另一参照系来说却作变速运动,但物体及其所受的力并不因为所选的参照系的不同而改变,所受的力并不因为所选的参照系的不同而改变,所以,第一定律能否成立与所选的参照系密切所以,第一定律能否成立与所选的参照系密切相关。相关。 凡第一定律(惯性定律)在其中能成立凡第一定律(惯性定律)在其中能成立的参照系称为惯性坐标系。的参照系称为惯性坐标系。 工程实际中,所遇到的大多数的动力学问题,工程实际中,所遇到的大多数的动力学问题,都可以把固结在地球表面坐标系看作是惯性坐标都可以把固结在地球表面坐标系看作是惯性坐标系。研究人造地球卫星或行星的运动时,则应分系。研究人造地球卫星或行星的运动时,则应分别选
8、取地心或日心原点,且坐标轴在空间方向保别选取地心或日心原点,且坐标轴在空间方向保持不变的坐标系作为惯性坐标系。持不变的坐标系作为惯性坐标系。 同时,第一定律也表明了外力是物体获得同时,第一定律也表明了外力是物体获得加速度的外部原因。加速度的外部原因。aFm第二定律:第二定律: 即使物体所获得的加速度的大小与它所即使物体所获得的加速度的大小与它所受受的外力成正比,而与物体的质量成反比,加的外力成正比,而与物体的质量成反比,加速速度方向与外力的方向相同。度方向与外力的方向相同。 第二定律阐明了物体的质量,加速度与它第二定律阐明了物体的质量,加速度与它所受的力三者之间的关系。所受的力三者之间的关系。
9、mam1,FaaFaFm 从上式可以看出,当物体在某个力的作用从上式可以看出,当物体在某个力的作用下获得大小为一个单位的加速度时,则此物体下获得大小为一个单位的加速度时,则此物体的质量在数值上就与该力相等。所以,质量在的质量在数值上就与该力相等。所以,质量在数值上等于该物体获得一个单位加速度时所需数值上等于该物体获得一个单位加速度时所需加的力。加的力。 )(其商为标量aFm可以看出,当可以看出,当大,惯性小。小,获得的一定,小,惯性大;大,获得的一定,aFaFmm从:从:aFm因此:质量小的物体惯性小(容易改变原来的因此:质量小的物体惯性小(容易改变原来的运动状态);质量大的物体惯性大(不易改
10、变运动状态);质量大的物体惯性大(不易改变原来的运动状态);所以,物体的质量反映了原来的运动状态);所以,物体的质量反映了物体的惯性,即物体的惯性,即。 质量的单位:国际单位:质量的单位:国际单位:KgKg基本单位与导出单位:基本单位与导出单位:基本单位:在国际单位制(基本单位:在国际单位制(SISI)中,)中, 质量的单位是千克(质量的单位是千克(KgKg),), 长度的单位是米(长度的单位是米(m m),), 时间的单位是秒(时间的单位是秒(s s)导出单位:力的单位属于导出单位。导出单位:力的单位属于导出单位。 使质量为使质量为1Kg1Kg的物体获得的物体获得1 1米米/s/s2 2的加
11、速度所需的加速度所需加的力被取作为力的单位,称为加的力被取作为力的单位,称为1 1牛顿(牛顿( 简称牛,简称牛,符号为符号为N N),即:),即: 2/g11smKN工程单位制中力的单位是基本单位,工程单位制中力的单位是基本单位, 质量的单位为导出单位。质量的单位为导出单位。规定为:质量为规定为:质量为1Kg1Kg的物体置于北纬的物体置于北纬4545度的海平面度的海平面时该物体的所受的重力值取作为力的单位,称为时该物体的所受的重力值取作为力的单位,称为1 1公斤(力)。公斤(力)。 (或者说,将能使质量为(或者说,将能使质量为1Kg1Kg的物体所受的重力的物体所受的重力值,取作为力的单位,称为
12、值,取作为力的单位,称为1 1公斤(力)。公斤(力)。 即:即:1Kg1Kg(力)(力)1Kg1Kg9.8 m/s9.8 m/s2 29.8 N9.8 N上式为国际单位制及工程单位制中,力的两种上式为国际单位制及工程单位制中,力的两种 不同单位(公斤力与牛)之间的转换关系式。不同单位(公斤力与牛)之间的转换关系式。在工程单位制中,质量的单位为:在工程单位制中,质量的单位为:1 1工程质量单位工程质量单位 将在将在1 1公斤公斤( (力力) )的作用下能获得的作用下能获得1m/s1m/s2 2 的的加速度的物体所具有的质量称为加速度的物体所具有的质量称为1 1质量的单位。质量的单位。1 1工程质
13、量单位工程质量单位1 1公斤(力)公斤(力)秒秒2 2米米 9.8N9.8Ns s2 2/m=9.8Kg/m=9.8Kg 该式为质量的两种不同单位的换算关系该式为质量的两种不同单位的换算关系 采用工程单位制时,如已知受力物体的重量采用工程单位制时,如已知受力物体的重量p p(以公斤为单位),则其质量为(以公斤为单位),则其质量为p/gp/g。 牛顿第二定律适合于惯性坐标系。牛顿第二定律适合于惯性坐标系。附:精密仪器工业中:附:精密仪器工业中: 绝对单位制为厘米克秒制绝对单位制为厘米克秒制 基本单位:用基本单位:用cmcm表示长度,表示长度,g g表示质量,表示质量, s s表示时间。表示时间。
14、 导出单位:用达因(导出单位:用达因(dynedyne)表示:)表示: 1dyne1dyne1g1g1cm1cms s2 2 即即: : 一克质量的物体获得一克质量的物体获得1cm1cms s2 2的加速度的加速度 时,作用于物体上的力为时,作用于物体上的力为1 dyne.1 dyne. 当甲物体以一力作用于乙物体时,则乙物体当甲物体以一力作用于乙物体时,则乙物体必对甲物体有一反作用力,作用力与反作用力等必对甲物体有一反作用力,作用力与反作用力等值,反向,共线,且分别作用于甲乙物体之上。值,反向,共线,且分别作用于甲乙物体之上。 该定律对于静力和动力都适合。该定律对于静力和动力都适合。 运动运
15、动DE 指一个方程,该方程直接由牛顿第二指一个方程,该方程直接由牛顿第二定律导出;方程中包含了确定质点的变量对时定律导出;方程中包含了确定质点的变量对时间的变化率;即称为质点运动微分方程,方程间的变化率;即称为质点运动微分方程,方程有多种形式;有多种形式;MOyzryvxxzFFrFrFrvaFa2222:m(dtdmdtddtddtdm或者为合力) 将矢量形式的运动将矢量形式的运动DE各项所表达的直角各项所表达的直角坐标轴上进行投影,得到投影形式的坐标轴上进行投影,得到投影形式的DE:直角坐标形式的质点运动微分方程(组)直角坐标形式的质点运动微分方程(组)zyxFzmFymFxm MOyzr
16、yvxxzF特殊形式:质点沿平面曲线运动:特殊形式:质点沿平面曲线运动:OFzozzZ0, 0 0, 00, 0zyFFzy 质点沿直线运动:(力系在质点沿直线运动:(力系在y y,z z方向上均平衡)方向上均平衡) 若已知质点运动的轨迹,则可将矢量形式若已知质点运动的轨迹,则可将矢量形式的运动微分方程两端的投影到自然坐标轴。的运动微分方程两端的投影到自然坐标轴。 onMbvFa,n n,b b分别为轨迹的切线、法线及次法线轴。分别为轨迹的切线、法线及次法线轴。bbnnbnFmaFvmmaFsmmavmdtvdm0022 FFnF得:得:特殊情形:特殊情形: (1 1)如果质点沿平面曲线运动,
17、那么曲线上)如果质点沿平面曲线运动,那么曲线上的点的密切面都在该平面上。的点的密切面都在该平面上。 (2 2)如果质点作直线运动,则只要第一式。)如果质点作直线运动,则只要第一式。 利用以上三种形式的直线运动微分方程,利用以上三种形式的直线运动微分方程,原则上就能解决有关质点运动学的所以问题,原则上就能解决有关质点运动学的所以问题,至于在具体应用时宜选取什么形式的运动微分至于在具体应用时宜选取什么形式的运动微分方程,则需要根据具体的问题而定。方程,则需要根据具体的问题而定。 质点动力学的问题分为两类:质点动力学的问题分为两类:第一类问题第一类问题: :(微分问题)(微分问题) 已知质点的运动,
18、即已知质点的运动方程,已知质点的运动,即已知质点的运动方程,或已知质点在某瞬时的速度或加速度,求作用于或已知质点在某瞬时的速度或加速度,求作用于质点的未知力。质点的未知力。第二类问题第二类问题: :(积分问题)(积分问题) 已知质点所受的力,求质点的运动方程或已知质点所受的力,求质点的运动方程或速度。速度。 两类问题常常不能截然分开,常常在一个问题中两类问题常常不能截然分开,常常在一个问题中就包含着这两类问题。就包含着这两类问题。 已知质点的运动,求作用在质点的力。已知质点的运动,求作用在质点的力。 如果已知质点的运动方程,求它们对时间的如果已知质点的运动方程,求它们对时间的导数,于是由质点的
19、运动微分方程即可求出作用导数,于是由质点的运动微分方程即可求出作用在质点上的力。在质点上的力。 所以,这类问题可以归结为所以,这类问题可以归结为。 运动时不受约束的质点,运动时不受约束的质点, 如人造卫星,炮弹等,其运动由主动力和运如人造卫星,炮弹等,其运动由主动力和运动的起始条件决定的。动的起始条件决定的。运动时受到约束的质点,运动时受到约束的质点, 非自由质点的运动不仅决定于主动力和运动非自由质点的运动不仅决定于主动力和运动的起始条件,而且还与约束的性质有关。的起始条件,而且还与约束的性质有关。 如自由质点或非自由质点的运动情况已知,要求出如自由质点或非自由质点的运动情况已知,要求出它所受
20、的力,这类问题属于第一类问题。它所受的力,这类问题属于第一类问题。(1)(1)明确研究对象,画出受力图明确研究对象,画出受力图(2)(2)选取适当的坐标系,分析运动和受力,根据选取适当的坐标系,分析运动和受力,根据 问题的已知条件建立适当的运动微分方程。问题的已知条件建立适当的运动微分方程。 123( )xftyftsf tzft或 22s0 xynzbmvmsFmxFmmvmyFFmzFF或 由简单的导数运算,可求得加速度,再建立由简单的导数运算,可求得加速度,再建立运动微分方程运动微分方程 解出微分方程各未知力,即得需求的结果。解出微分方程各未知力,即得需求的结果。(将各力代入微分方程求解
21、)(将各力代入微分方程求解) 例例: : 汽车的质量汽车的质量m=1500 kg, , 以匀速以匀速v=36km/h 在在一段向上弯曲的圆弧路面上行驶,已知圆弧半径一段向上弯曲的圆弧路面上行驶,已知圆弧半径R100m,求汽车所受路面对它的法向反力的最,求汽车所受路面对它的法向反力的最大值。大值。aaBmgvnFNFf解:(解:(1 1)研究汽车,受力分析如图)研究汽车,受力分析如图agFFfmm N)(022常量Rvvaan(3 3)建立运动微分方程求解)建立运动微分方程求解: : 由牛顿第二定律得出:由牛顿第二定律得出:(2 2)速度分析如图)速度分析如图, 匀速运动:匀速运动:aaBmgv
22、nFNFf 汽车运动的轨迹为一段圆弧,故选取自然汽车运动的轨迹为一段圆弧,故选取自然坐标形式的运动微分方程,故有:坐标形式的运动微分方程,故有: cos0sin2mgFRvMFmgdtdvmNfaaBmgvnFNFf0adtdv汽车作匀速运动:汽车作匀速运动:由上列方程得:由上列方程得:gRvmgRvgmFFfFFmgNNsff22coscos)0sin(aaBmgvnFNFf)g1 (2maxRvmgFN当汽车达到最低点当汽车达到最低点B B时,时,max0NNFF ,KNFN62. 1max且:且:将:将:smhkmvmRsmgm/10/36,100/8 . 9kg15002,代入得:代入
23、得: 由以上得计算可以看出,汽车在圆弧路面由以上得计算可以看出,汽车在圆弧路面上行驶时,所受路面法向反力上行驶时,所受路面法向反力FNFN由两部分组成:由两部分组成: 第一部分汽车静止于任一点第一部分汽车静止于任一点A A处时由车重所处时由车重所引起的法向反力,称为静反力;引起的法向反力,称为静反力; 第二部分是汽车因受路面的限制,而被迫第二部分是汽车因受路面的限制,而被迫改变运动方向而沿圆弧运动所需的向心力,也改变运动方向而沿圆弧运动所需的向心力,也属法向反力,称为动反力。属法向反力,称为动反力。 sinmgRmv /2gRv21 路面对汽车的法向反力等于静反力与动反力路面对汽车的法向反力等
24、于静反力与动反力之和。之和。 当法向反力达到其最大值(即汽车在当法向反力达到其最大值(即汽车在B B点处)点处)时,其法向反力与法向静反力的比值为:时,其法向反力与法向静反力的比值为:称为动荷系数。称为动荷系数。 表示物体按照已知条件运动时,所受的最大表示物体按照已知条件运动时,所受的最大法向动反力是法向静反力的倍数。法向动反力是法向静反力的倍数。 动力学的问题中,因为动反力经常出现,所以应给动力学的问题中,因为动反力经常出现,所以应给予足够重视。予足够重视。例例2 质量为质量为1kg的重物的重物M,系于长,系于长L0.3m 的的线上,线的上端固定在天花板上的线上,线的上端固定在天花板上的O点
25、,重物点,重物在水平面内作匀速圆周运动而使悬线与铅垂线在水平面内作匀速圆周运动而使悬线与铅垂线间的夹角恒为间的夹角恒为60度,试求重物运动的速度和线度,试求重物运动的速度和线上的张力。上的张力。nMvzbmgo60rLTF解:(解:(1 1)研究)研究M(2 2)受力分析如图:)受力分析如图: 拉力拉力F,重力,重力mg (3 3)运动分析:)运动分析:M在平面上在平面上 作圆周运动,作圆周运动, vaan,速度沿速度沿M点切线方向点切线方向(4 4)建立运动微分方程并求解)建立运动微分方程并求解 因因M点的轨迹已知为圆周,故可采用自然点的轨迹已知为圆周,故可采用自然坐标形式的运动微分方程坐标
26、形式的运动微分方程2000sin600cos60nTbTdvmFdtvmFFrFmgF nMvzbmgo60rLTFsmmlFmrFvTT/1 . 260sin60sin00KNmgFT6 .1960cos0由第由第1 1式知:式知:v常量,常量,由第由第3 3式得:式得:将将TF值代入第值代入第2式得:式得:即重物的速度为即重物的速度为2.1m/s。 又悬线上的张力应与重物所受的拉力大小又悬线上的张力应与重物所受的拉力大小相等,其值为相等,其值为19.6kN 2000sin600cos60nTbTdvmFdtvmFFrFmgF 例例 套管套管A重重FP,因受细绳牵引,而沿垂直杆,因受细绳牵引
27、,而沿垂直杆向上滑动。细绳过小滑轮向上滑动。细绳过小滑轮B而绕在鼓轮上,滑而绕在鼓轮上,滑轮与杆的水平距离为轮与杆的水平距离为L,当鼓轮匀角速转动时,当鼓轮匀角速转动时,轮缘上各点速度的大小轮缘上各点速度的大小v,如不计滑轮半径和如不计滑轮半径和摩擦,求以距离摩擦,求以距离x表示的细绳的拉力。表示的细绳的拉力。 AxBssTAPxNFFFL解:(解:(1 1)取套管)取套管A 为研究对象。为研究对象。(2 2)受力分析:)受力分析:重力重力FP,细绳拉力,细绳拉力FT,杆对套管的约束反力杆对套管的约束反力FN(3 3)建立如图坐标系;)建立如图坐标系;(4 4)A A点的运动微分方程:点的运动
28、微分方程: cos(1)PPTFFFxg 需要先找出需要先找出A 点的点的运动方程运动方程x = = f(t);再求;再求2 2阶导数,代入阶导数,代入(1)中中求解。求解。AxBssTAPxNLFFF 设初瞬时设初瞬时( (t=0) )套管位于套管位于A0,A0至滑轮至滑轮B的的一段绳长为一定值一段绳长为一定值S0,又在瞬时,又在瞬时 t 套管位于套管位于A, ,A至滑轮至滑轮B 的一段绳长为的一段绳长为 S,则,则 SS0 就是在就是在从初瞬时到瞬时从初瞬时到瞬时t所绕在鼓轮上的绳长,它等于所绕在鼓轮上的绳长,它等于初瞬时绳上位于鼓轮边缘处的点在同一时间初瞬时绳上位于鼓轮边缘处的点在同一时
29、间t内内所过的弧长。故有:所过的弧长。故有:tvss00由图中几何关系得:由图中几何关系得:22LxStvSLxS0022套管套管A的运动方程的运动方程AxBssTAPxNLFFF)2(320222202xvLLxxxvLx 将运动方程等式两端对时间将运动方程等式两端对时间t求导,得:求导,得:220022LxxvxvLxxx导管导管A的速度与坐标之间的关系。的速度与坐标之间的关系。A点的加速度为:点的加速度为:tvSLxS00222220311gcosPTL vFLFgxx以以x x表示的绳的拉力。表示的绳的拉力。由于由于v0、L、x均为正,而均为正,而 、 均为负,均为负,说明套管说明套管
30、A A沿铅垂杆加速上升。将沿铅垂杆加速上升。将 值值代入得:代入得:x x x 小结:解动力学第一问题,步骤如下:小结:解动力学第一问题,步骤如下:(1 1)分析质点的受力情况:)分析质点的受力情况: 对于非自由质点,除了主动力外还受到约束对于非自由质点,除了主动力外还受到约束 反力的作用,一般来说,约束反力是未知力,但反力的作用,一般来说,约束反力是未知力,但 其作用线和指向往往可根据约束的性质决定。根其作用线和指向往往可根据约束的性质决定。根 据受力情况准确的画出质点的脱离体及受力图。据受力情况准确的画出质点的脱离体及受力图。 (2 2)分析质点的运动情况:)分析质点的运动情况: 按题意给
31、出的运动条件,分析质点的轨迹,按题意给出的运动条件,分析质点的轨迹, 速度和加速度。并由此确定所采用的微分方程速度和加速度。并由此确定所采用的微分方程 的形式。的形式。(3 3)列出运动微分方程,并将已知条件代入以)列出运动微分方程,并将已知条件代入以 求出未知力。求出未知力。4.4.质点动力学第二类问题质点动力学第二类问题 质点动力学的第二类问题为已知作用于质点质点动力学的第二类问题为已知作用于质点上的力,需要求出质点的速度和运动方程等,这上的力,需要求出质点的速度和运动方程等,这类问题恰于第一类问题相反,可归结为对运动微类问题恰于第一类问题相反,可归结为对运动微分方程的积分问题。分方程的积
32、分问题。例如,若已知质点所受的力在坐标轴上的投影例如,若已知质点所受的力在坐标轴上的投影x、y、z 和和 F、Fn,要求出质点的运动规律,要求出质点的运动规律,则必须对于运动则必须对于运动DE:积分,并根据运动的初始条件以确定积分常量。积分,并根据运动的初始条件以确定积分常量。bnCFFvmFdtdvmZzmYymXxm02或 由于力可以是多种多样的各种函数,因此由于力可以是多种多样的各种函数,因此解决这类问题没有统一的方法,要根据力的类解决这类问题没有统一的方法,要根据力的类型而决定。型而决定。 又由于积分问题比微分问题困难,不是所又由于积分问题比微分问题困难,不是所有的函数都可求得积分的解
33、析解,还可能采用有的函数都可求得积分的解析解,还可能采用数值解,或者采用计算机进行数值解。数值解,或者采用计算机进行数值解。1 1、可将通常遇到的力分为以下几类、可将通常遇到的力分为以下几类: :(1 1)常力:)常力: 如地面附近的物体所受的重力,均匀静电场中如地面附近的物体所受的重力,均匀静电场中运动的带电质点所受的电场力等。运动的带电质点所受的电场力等。(2 2)力是质点坐标(即位置)的函数;)力是质点坐标(即位置)的函数; 如弹性力,万有引力以及两带电物体间的静电如弹性力,万有引力以及两带电物体间的静电力等。力等。(3 3)力是质点速度的函数:)力是质点速度的函数: 介质(气体或带电体
34、)中的运动物体所受的介介质(气体或带电体)中的运动物体所受的介质阻力等。质阻力等。 (4 4)力是时间的函数)力是时间的函数; ; 机器启动或停止过程中马达的牵引力;机器启动或停止过程中马达的牵引力; 带电质点在变电场(电流随时间而变化)中带电质点在变电场(电流随时间而变化)中 所受的力;所受的力; 工程结构所受的地震力等等。工程结构所受的地震力等等。 在实际问题中,质点往往受到多个不同类的在实际问题中,质点往往受到多个不同类的力的同时作用,例如,空中飞行的炮弹同时受到力的同时作用,例如,空中飞行的炮弹同时受到重力和介质阻力的作用,而如果是飞行中的飞机,重力和介质阻力的作用,而如果是飞行中的飞
35、机,则除重力与介质阻力外还会受到喷气推进力等等则除重力与介质阻力外还会受到喷气推进力等等的作用。的作用。 质点所受的力复杂,又不同类,微分方程中质点所受的力复杂,又不同类,微分方程中包括了几种不同类型的函数,象这类问题,就找包括了几种不同类型的函数,象这类问题,就找不到解析解,只能采用近似解。不到解析解,只能采用近似解。2 2、例题、例题 力是常力和力是质点坐标的函数力是常力和力是质点坐标的函数例例: : 一长为一长为L ,L ,质量不计的细绳上端固定于质量不计的细绳上端固定于O O点,点,下端系一质量为下端系一质量为 m m 的小球并可在沿铅垂平面内的小球并可在沿铅垂平面内摆动。如图摆动。如
36、图 ,已知,已知当绳的摆角为当绳的摆角为 0 ,小球的速度为小球的速度为v0 0,试,试求小球在任意位置时求小球在任意位置时的速度。的速度。oL0解:解:(1 1)研究对象:)研究对象: 小球小球A(2 2)受力分析:)受力分析: 重力重力mg, 绳的约束反力绳的约束反力FT(3 3)运动分析:)运动分析: 小球作已知的小球作已知的 圆周运动,半径为圆周运动,半径为L,任一瞬时小球的,任一瞬时小球的速度沿该位置的切线方向。速度沿该位置的切线方向。 oL0nvmgFT 因其运动轨迹已知因其运动轨迹已知为一圆弧运动,所以建为一圆弧运动,所以建立自然坐标形式的运动立自然坐标形式的运动微分方程。微分方
37、程。 agFmm T T(4 4)建立运动微分方程:)建立运动微分方程:oL0nvmgFTsinsinsingddvlvddvlvddvdtdddvdtdvgdtdvmgdtdvmOOdglvdvdglvdvgddvlvvvsinsinsinOOOOglvvglvvcoscos2coscos21222两端积分得:两端积分得:小球在任一位置时的速度小球在任一位置时的速度例 由地球表面上任意一点沿铅垂方向向上发射物体,如图,试求此物体射出后不致返回地球所需的发射速度。oMvFxR 解:(解:(1 1)研究质点)研究质点M M (2 2)M M点受万有引力的作用。点受万有引力的作用。 由牛顿定律知物
38、体所受地球引力的大小为:由牛顿定律知物体所受地球引力的大小为: 2rmF F-是引力常数;是引力常数; M M是物体的质量;是物体的质量;r r是物体到地心的距离。是物体到地心的距离。oMvFxR 以地心为坐标原点,以地心为坐标原点,x x轴铅垂向上,则物体轴铅垂向上,则物体在任一位置时所受的引力在任一位置时所受的引力F F在在x x轴上的投影为:轴上的投影为:2xmFx的确定:的确定: 当物体位于地面时,当物体位于地面时,它所受地心引力为重力。它所受地心引力为重力。因而有:因而有:2222xmgRFgRRmmgxoMvFxR(3 3)运动分析:)运动分析:M直线运动直线运动(4 4)建立直角
39、坐标形式的运动微分方程。)建立直角坐标形式的运动微分方程。 2222xgRxxmgRFxmx oMvFxR采用分离变量求解微分方程:采用分离变量求解微分方程:dxxdxdtdxdxxddtxdx 代入上式得:代入上式得:dxxgRxdx2222xgRx xgRgRvvRxgRvvOo22222221121 设发射速度为设发射速度为v0,物体在空中任意位置时的速度,物体在空中任意位置时的速度为为v,则:,则:故得:故得:vvxROxdxgRxdx22dxxgRxdx22 当物体的坐标x趋近无穷大时,它所受到的地球引力应趋近于0,这时,即使物体的速度v 已减到0,物体也不会返回地球,于是由上式可得
40、上抛物体一去不返的最小发射速度为:gRvO2svO/km2 .11地球半径:R6370km,g=9.8m/s2,代入上式得: 这就是物体逃离地球所需的最小发射速度,称为第二宇宙速度(又称为逃逸速度)3. 3. 力是速度的函数力是速度的函数例例 当物体在气体,液体等于介质中运动时,介质当物体在气体,液体等于介质中运动时,介质阻力对物体的影响非常大,例如雨滴的降落,泥沙阻力对物体的影响非常大,例如雨滴的降落,泥沙沉淀以及伞兵跳伞等,这些物体在运动中所受阻力沉淀以及伞兵跳伞等,这些物体在运动中所受阻力随速度的增大而增大随速度的增大而增大 ,因而加速度越来越小,因而加速度越来越小 ,当,当介质阻尼力与
41、物体所受重力平衡时,则物体的加速介质阻尼力与物体所受重力平衡时,则物体的加速度减小到零度减小到零 , 此后物体速度不会再增加而将保持此后物体速度不会再增加而将保持为常量为常量 ,显然,显然 ,此常量即为物体在降落过程中所,此常量即为物体在降落过程中所能达到的最大速度,常被称为极限速度。能达到的最大速度,常被称为极限速度。omgxxRF 假定物体所受介质阻力假定物体所受介质阻力与其速度的平方成正比,求与其速度的平方成正比,求此物体下落的极限速度此物体下落的极限速度 c c 阻尼系数阻尼系数 s s 受阻面积受阻面积 (即物体在垂直于(即物体在垂直于v v方向上面积的投影)方向上面积的投影) 介质
42、密度,令:介质密度,令:cscs解:(解:(1 1)研究物体)研究物体 (2 2)受力分析:)受力分析: 重力重力mg mg ,介质阻尼,介质阻尼R R, R R与与v v的平方成正比,设为:的平方成正比,设为:2vcsFR(3 3)建立坐标,运动为直线运动)建立坐标,运动为直线运动(4 4)建立运动微分方程为:)建立运动微分方程为:22vmgxmvmgFmgxmR 当物体达到极限速度时,当物体达到极限速度时,其加速度为其加速度为0 0,故得:,故得:csmgmgv* 在同一介质中几何形状和大小均相同的两质量在同一介质中几何形状和大小均相同的两质量不同的下落物体,则其极限速度也不同。不同的下落
43、物体,则其极限速度也不同。omgxxRF即:几何形状和大小均相同的物体,在同一介质中即:几何形状和大小均相同的物体,在同一介质中 的极限速度与其质量的平方根成正比,利用以的极限速度与其质量的平方根成正比,利用以 上性质,可在介质中分离密度不同,而几何条上性质,可在介质中分离密度不同,而几何条 件相同的物体。件相同的物体。21*2*1mmvv若两物体的质量分别为若两物体的质量分别为m m1 1、m m2 2,则极限速度之比为:,则极限速度之比为: 根据分析得到以上极限速度。根据分析得到以上极限速度。smv/3 .48(*极限)smvmsc/ .5,50,48. 0*2代入上式得:32/25. 1,mkgm 如飞行员体重如飞行员体重750 N750 N,当不张伞时:,当不张伞时:C=0.6C=0.6,S=0.4S=0.4代入上式可得:代入上式可得:开伞后:开伞后:该式变形得:该式变形得: 2vcsmgdtdvm22vmgmvmcsgdtdv直接由微分方程积分得极限速度: tvvdtrgrvdvvrrgdtdvmgro02222222令:2vmgxm trgtrgOOOOvvbeatebarvrvbrvrvatrgrvrvLnrvrvLntrgrvrvLnrO222,;2;21:令时可得当tvvdtrgrvdvo0222mgr 2
限制150内