人教版初中数学七年级下册8.2.1.1《代入消元法1》课件(共15张PPT).ppt
《人教版初中数学七年级下册8.2.1.1《代入消元法1》课件(共15张PPT).ppt》由会员分享,可在线阅读,更多相关《人教版初中数学七年级下册8.2.1.1《代入消元法1》课件(共15张PPT).ppt(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,新人教七(下)第八章二元一次方程组,8.2代入消元法解方程(1),1.让学生会用代入消元法解二元一次方程组.2.初步体会解二元一次方程组的基本思想“消元”。3.体会代入消元法和化未知为已知的数学转化思想.,代入消元法解二元一次方程组教学目标,“一切问题都可以转化为数学问题,一切数学问题都可以转化为代数问题,而一切代数问题又都可以转化为方程问题,因此,一旦解决了方程问题,一切问题将迎刃而解!”法国数学家笛卡儿Descartes,1596-1650,名人语录,把下列方程改写成用含x的式子表示y,再改写成用含y的式子表示x的形式。,(1)2x-y=32)3x+y-1=3,知识链接,篮球联赛中,每场
2、比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?,问题,上面的解方程组的基本思路是什么?基本步骤有哪些?,上面解方程组的基本思路是“消元”把“二元”变为“一元”。,主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表现出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。这种解方程组的方法称为代入消元法,简称代入法。,归纳,例1用代入法解方程组xy=33x8y=14,例题分析,解:由得y=x3,解这个方程得:x=2,把代入得3x8(x3)=14,把x=2代入得:y=
3、1,所以这个方程组的解为:,试一试:用代入法解二元一次方程组,最为简单的方法是将_式中的_表示为_,再代入_,x,X=6-5y,例2解方程组,解:,由得:,y=12x,把代入得:,3x2(12x)=19,3x2+4x=19,3x+4x=19+2,7x=21,x=3,把x=3代入,得,y=12x,=1-23,=-5,x=3,y=-5,1、将方程组里的一个方程变形,用含有一个未知数的一次式表示另一个未知数(变形),2、用这个一次式代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值(代入求解),3、把这个未知数的值再代入一次式,求得另一个未知数的值(再代求解),4、写出方程组的解(写解),1.将方程5x-6y=12变形:若用y的式子表示x,则x=_,当y=-2时,x=_;若用含x的式子表示y,则y=_,当x=0时,y=_。,2.解二元一次方程组,、若方程是关于x、y的二元一次方程,求的值。,4.以x、y为未知数的方程组,与方程组,的解相同,试求a、b的值。,1、将方程组里的一个方程变形,用含有一个未知数的一次式表示另一个未知数(变形),2、用这个一次式代替另一个方程中的相应未知数,得到一个一元一次方程,求得一个未知数的值(代入),3、把这个未知数的值代入一次式,求得另一个未知数的值(再代),4、写出方程组的解(写解),本节课你有什么收获?,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 代入消元法1 人教版 初中 数学 年级 下册 8.2 1.1 代入 消元法 课件 15 PPT
限制150内