传感器原理及工程应用(第三版)郁有文1-5第6章ppt课件.ppt
《传感器原理及工程应用(第三版)郁有文1-5第6章ppt课件.ppt》由会员分享,可在线阅读,更多相关《传感器原理及工程应用(第三版)郁有文1-5第6章ppt课件.ppt(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第6章 压电式传感器 第6章 压电式传感器 6.1 压电效应及压电材料压电效应及压电材料 6.2 压电式传感器测量电路压电式传感器测量电路6.3 压电式传感器的应用压电式传感器的应用 第6章 压电式传感器 6.1 压电效应及压电材料压电效应及压电材料 某些电介质,当沿着一定方向对其施力而使它变形时,内部就产生极化现象,同时在它的两个表面上便产生符号相反的电荷, 当外力去掉后,又重新恢复到不带电状态。这种现象称压电效应。 当作用力方向改变时,电荷的极性也随之改变。有时人们把这种机械能转换为电能的现象, 称为“正压电效应”。相反,当在电介质极化方向施加电场,这些电介质也会产生几何变形,这种现象称为
2、“逆压电效应”(电致伸缩效应)。具有压电效应的材料称为压电材料,压电材料能实现机电能量的相互转换,如图6 - 1所示。 第6章 压电式传感器 图6-1 压电效应可逆性 第6章 压电式传感器 在自然界中大多数晶体都具有压电效应,但压电效应十分微弱。随着对材料的深入研究,发现石英晶体、钛酸钡、锆钛酸铅等材料是性能优良的压电材料。 压电材料可以分为两大类:压电晶体和压电陶瓷。 压电材料的主要特性参数有: 压电常数: 压电常数是衡量材料压电效应强弱的参数,它直接关系到压电输出灵敏度。 弹性常数: 压电材料的弹性常数、刚度决定着压电器件的固有频率和动态特性。 第6章 压电式传感器 介电常数: 对于一定形
3、状、尺寸的压电元件,其固有电容与介电常数有关;而固有电容又影响着压电传感器的频率下限。 机械耦合系数:它的意义是,在压电效应中,转换输出能量(如电能)与输入的能量(如机械能)之比的平方根,这是衡量压电材料机电能量转换效率的一个重要参数。 电阻: 压电材料的绝缘电阻将减少电荷泄漏,从而改善压电传感器的低频特性。 居里点温度: 它是指压电材料开始丧失压电特性的温度。 第6章 压电式传感器 表表6-1 常用压电材料性能参数常用压电材料性能参数 第6章 压电式传感器 6.1.1 石英晶体石英晶体 石英晶体化学式为SiO2,是单晶体结构。图6-2(a)表示了天然结构的石英晶体外形,它是一个正六面体。石英
4、晶体各个方向的特性是不同的。 其中纵向轴z称为光轴,经过六面体棱线并垂直于光轴的x称为电轴,与x和z轴同时垂直的轴y称为机械轴。 通常把沿电轴x方向的力作用下产生电荷的压电效应称为“纵向压电效应”, 而把沿机械轴y方向的力作用下产生电荷的压电效应称为“横向压电效应”。 而沿光轴z方向的力作用时不产生压电效应。 第6章 压电式传感器 图6-2 石英晶体(a) 晶体外形; (b) 切割方向; (c) 晶片 第6章 压电式传感器 若从晶体上沿y方向切下一块如图6-2(c)所示的晶片,当沿电轴方向施加作用力Fx时,在与电轴x垂直的平面上将产生电荷, 其大小为 xxFdq11(6-1) 式中, d11为
5、x方向受力的压电系数。 若在同一切片上,沿机械轴y方向施加作用力Fy,则仍在与x轴垂直的平面上产生电荷qy,其大小为 yyFbadq12(6-2) 第6章 压电式传感器 式中:d12y轴方向受力的压电系数,根据石英晶体的对称性, 有d12=-d11; a、b晶体切片的长度和厚度。 电荷qx和qy的符号由受压力还是受拉力决定。 石英晶体的上述特性与其内部分子结构有关。图6-3是一个单元组体中构成石英晶体的硅离子和氧离子,在垂直于z轴的xy平面上的投影,等效为一个正六边形排列。 图中“”代表硅离子Si4+, “”代表氧离子O2-。 当石英晶体未受外力作用时,正、负离子正好分布在正六边形的顶角上,形
6、成三个互成120夹角的电偶极矩P1、P2、P3。 如图6-3(a)所示。 第6章 压电式传感器 图6-3 石英晶体压电模型(a) 不受力时; (b) x轴方向受力; (c) y轴方向受力 yxP1P2P3(a) (b)(c)xyAFxP1P2P3oFxBxAFyyCBDP1P2P3ooFy第6章 压电式传感器 因为P=ql, q为电荷量,l为正负电荷之间距离。此时正负电荷重心重合,电偶极矩的矢量和等于零,即P1+P2+P3=0,所以晶体表面不产生电荷,即呈中性。 当石英晶体受到沿x轴方向的压力作用时,晶体沿x方向将产生压缩变形,正负离子的相对位置也随之变动。如图6-3(b)所示,此时正负电荷重
7、心不再重合,电偶极矩在x方向上的分量由于P1的减小和P2、P3的增加而不等于零。在x轴的正方向出现负电荷, 电偶极矩在y方向上的分量仍为零,不出现电荷。 第6章 压电式传感器 当晶体受到沿y轴方向的压力作用时,晶体的变形如图6-3c)所示。与图6-3(b)情况相似,P1增大,P2、P3减小。在x轴上出现电荷,它的极性为x轴正向为正电荷。在y轴方向上仍不出现电荷。 如果沿z轴方向施加作用力,因为晶体在x方向和y方向所产生的形变完全相同,所以正负电荷重心保持重合,电偶极矩矢量和等于零。这表明沿z轴方向施加作用力,晶体不会产生压电效应。 当作用力Fx、Fy的方向相反时,电荷的极性也随之改变。 第6章
8、 压电式传感器 6.1.2 压电陶瓷压电陶瓷 压电陶瓷是人工制造的多晶体压电材料。材料内部的晶粒有许多自发极化的电畴,它有一定的极化方向,从而存在电场。 在无外电场作用时,电畴在晶体中杂乱分布,它们各自的极化效应被相互抵消,压电陶瓷内极化强度为零。因此原始的压电陶瓷呈中性,不具有压电性质, 如图6-4(a)所示。 在陶瓷上施加外电场时,电畴的极化方向发生转动,趋向于按外电场方向的排列,从而使材料得到极化。外电场愈强, 就有更多的电畴更完全地转向外电场方向。让外电场强度大到使材料的极化达到饱和的程度,即所有电畴极化方向都整齐地与外电场方向一致时,当外电场去掉后,电畴的极化方向基本变化,即剩余极化
9、强度很大,这时的材料才具有压电特性, 如图6-4(b)所示。 第6章 压电式传感器 图6-4 压电陶瓷的极化 (a) 未极化; (b) 电极化 第6章 压电式传感器 极化处理后陶瓷材料内部存在有很强的剩余极化,当陶瓷材料受到外力作用时,电畴的界限发生移动,电畴发生偏转, 从而引起剩余极化强度的变化, 因而在垂直于极化方向的平面上将出现极化电荷的变化。这种因受力而产生的由机械效应转变为电效应,将机械能转变为电能的现象,就是压电陶瓷的正压电效应。电荷量的大小与外力成如下的正比关系: Fdq33(6-3) 式中: d33 压电陶瓷的压电系数; F作用力。 第6章 压电式传感器 压电陶瓷的压电系数比石
10、英晶体的大得多,所以采用压电陶瓷制作的压电式传感器的灵敏度较高。极化处理后的压电陶瓷材料的剩余极化强度和特性与温度有关,它的参数也随时间变化, 从而使其压电特性减弱。 最早使用的压电陶瓷材料是钛酸钡(BaTiO3)。它是由碳酸钡和二氧化钛按1 1摩尔分子比例混合后烧结而成的。它的压电系数约为石英的50倍, 但居里点温度只有115,使用温度不超过70,温度稳定性和机械强度都不如石英。 第6章 压电式传感器 目前使用较多的压电陶瓷材料是锆钛酸铅(PZT)系列, 它是钛酸铅(PbTiO2)和锆酸铅(PbZrO3)组成的(Pb(ZrTi)O3)。居里点在300以上,性能稳定,有较高的介电常数和压电系数
11、(性能指标见表6-1)。 铌镁酸铅是20世纪60年代发展起来的压电陶瓷。它由铌镁酸铅、锆酸铅(PbZrO3)和钛酸铅(PbTiO3)按不同比例配出不同性能的压电陶瓷。具有极高的压电系数和较高的工作温度, 而且能承受较高的压力。 33231ONbMgPb第6章 压电式传感器 6.1.3 压电式传感器压电式传感器 压电式传感器的基本原理就是利用压电材料的压电效应这个特性,即当有力作用在压电材料上时,传感器就有电荷(或电压)输出。 由于外力作用而在压电材料上产生的电荷只有在无泄漏的情况下才能保存,即需要测量回路具有无限大的输入阻抗,这实际上是不可能的, 因此压电式传感器不能用于静态测量。压电材料在交
12、变力的作用下,电荷可以不断补充,以供给测量回路一定的电流,故适用于动态测量。 第6章 压电式传感器 单片压电元件产生的电荷量甚微,为了提高压电传感器的输出灵敏度, 在实际应用中常采用两片(或两片以上)同型号的压电元件粘结在一起。 由于压电材料的电荷是有极性的,因此接法也有两种。如图6-5所示,从作用力看,元件是串接的,因而每片受到的作用力相同,产生的变形和电荷数量大小都与单片时相同。 图6-5(a)是两个压电片的负端粘结在一起,中间插入的金属电极成为压电片的负极,正电极在两边的电极上。从电路上看,这是并联接法, 类似两个电容的并联。所以,外力作用下正负电极上的电荷量增加了1倍,电容量也增加了1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 传感器 原理 工程 应用 第三 郁有文 ppt 课件
限制150内