最全的VAR模型理论基础及其Eviews实现报告ppt课件.ppt
《最全的VAR模型理论基础及其Eviews实现报告ppt课件.ppt》由会员分享,可在线阅读,更多相关《最全的VAR模型理论基础及其Eviews实现报告ppt课件.ppt(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、VAR及其及其Eiews实现实现向量自回归向量自回归(VAR)模型模型主讲人:邓芳主讲人:邓芳克里斯托弗西姆斯向量自回归理论导入Granger因果检验及滞后阶数p的确定脉冲响应函数的基本思想及其Eiews实现VAR的表示与建立以及SVAR的识别方差分解及Eivews实现Johansen检验与VEC模型一、向量自回归理论 传统的计量经济方法(如联立方程模型等结构性方法)是以经济理论为基础来描述变量关系的模型。遗憾的是,经济理论通常并不足以对变量之间的动态联系提供一个严密的说明,而且内生变量既可以出现在方程的左端又可以出现在方程的右端使得估计和推断变得更加复杂。为了解决这些问题而出现了一种用非结构
2、性方法来建立各变量之间关系的模型。一、向量自回归模型 向量自回归(Vecotr atuo-regression)是基于数据的统计性质建立模型,VAR模型把系统中每一个内生变量作为系统中所有内生变量的滞后值来构造模型,从而将单变量自回归模型推广到多元时间序列变量组成的“向量”自回归模型。一、向量自回归理论 1980年西姆斯(Ch-restopher Sims)将VAR模型引入到经济学中,推动了经济系统动态性分析的广泛应用,他本人也因此而荣获2011年诺贝尔经济学奖。二 、VAR模型的表示与建立1、VAR模型的一般表示: 滞后阶数为滞后阶数为p p的的VARVAR模型表达式为模型表达式为 Yt=A
3、1Yt-1+A2Yt-2+ApYt-p+B Xt +t 其中,Yt为k维内生变量向量;Xt为d维外生变量向量;t是k维误差向量,A1,A2,Ap,B是待估系数矩阵。 滞后阶数为p的VAR模型表达式还可以表述为:即上式称为非限制性向量自回归(Unrestricted VAR)模型,是滞后算子L的k*k 的参数矩阵。当行列式detA(L)的根都在单位圆外时,不含外生变量的非限制性向量自回归模型才满足平稳性条件。 2、结构、结构VAR模型(模型(SVAR) 结构VAR是指在模型中加入了内生变量的当期值,即解释变量中含有当期变量,这是与VAR模型的不同之处。下面以两变量SVAR模型为例进行说明。 xt
4、=b10 + b12zt +11xt-1 +12 zt-1 + xt zt=b20 + b21xt +21xt-1 +22 zt-1 + zt 这是滞后阶数p=1的SVAR模型。其中,xt和zt均是平稳随机过程;随机误差项xt和zt是白噪声序列,并且它们之间不相关。系数b12表示变量的zt的变化对变量xt的影响;21表示xt-1的变化对zt的滞后影响。该模型同样可以用如下向量形式表达,即 B0 yt=0 +1 yt-1 + t (一)变量选取 根据宏观经济理论,消费(C)、投资(I)和出口(X)是影响经济的三驾马车,对经济增长有举足轻重的影响。所用年度数据均取自历年海南统计年鉴,每个变量样本时
5、间跨度为1987-2010年,样本容量为24。(二)数据预处理 数据预处理包括三个步骤: (1)凡以美元为单位的数据全部按当年的平均汇率折算为人民币;(2)所有数据均按GDP平减指数(1987=100)进行平减,以消除价格波动因素影响并获取实际值;(3)由于数据的自然对数变换不改变原有的协整关系,并能使其趋势线性化,消除时间序列中存在的异方差现象,所以对所有数据取其自然对数值,以增强数据线性化趋势、消除异方差,同时便于考察各变量对GDP的敏感性。3、VAR模型的建立选择“Quick”|“Estimate VAR”选项,将会弹出下图所示的对话框。在“VAR Type”中有两个选项:“Unrest
6、ricted VAR”建立的是无约束的向量自回归模型,即VAR模型的简化式;“Vector Error Correction”建立的是误差修正模型。“Estimation Sample”的编辑框中输入的是样本区间,当工作文件建立好后,系统会自动给出样本区间。“Endogenous Variables”中输入的是内生变量。“Exogenous Variables”中输入的是外生变量,系统默认情况下将常数项c作为外生变量。“Lag Intervals for Endogenous”中指定滞后区间 三、VAR模型的检验VARVAR模型的滞后结构检验模型的滞后结构检验 (1)AR根的图与表 如果VAR
7、模型所有根模的倒数都小于1,即都在单位圆内,则该模型是稳定的;如果VAR模型所有根模的倒数都大于1,即都在单位圆外,则该模型是不稳定的。如果被估计的VAR模型不稳定,则得到的结果有些是无效的。(如脉冲响应函数的标准误差)在VAR对象的工具栏中选择“View”|“Lag Structure”|“AR Roots Table/ AR Roots Graph”选项,得到AR根的表和图。-1.5-1.0-0.50.00.51.01.5-1.5-1.0-0.50.00.51.01.5Inverse Roots of AR Characteristic Polynomial三、VAR模型的检验(2)Gra
8、nger因果检验 Granger因果检验主要是用来检验内生变量是否可以作为外生变量对待。原假设是H0:变量x不能Granger引起变量y备择假设是H1:变量x能Granger引起变量y三、VAR模型的检验在EViews软件操作中,选择VAR对象工具栏中的“View”|“Lag Structure”|“Granger Causality/Block Exogeneity Tests”选项,可得到检验结果 。三、VAR模型的检验(2)Granger因果检验右图的检验结果为:在5%的显著性水平下,变量log(ex)能Granger引起变量log(ms),即拒绝原假设;但变量log(ms)不能Gran
9、ger引起变量log(ex)。三、VAR模型的检验(3)滞后排除检验滞后排除检验(Lag Exclusion Tests)是对VAR模型中的每一阶数的滞后进行排除检验。如右图所示。第一列是滞后阶数,第二至五列是方程的2统计量,最后一列是联合的2统计量。三、VAR模型的检验(4)滞后阶数标准滞后长度标准(Lag Length Criteria)是计算出各种标准,选择无约束VAR模型的滞后阶数,可以填入确切的最大的滞后阶数来检验。表中将显示出直至最大滞后阶数的各种信息标准(如果在VAR模型中没有外生变量 ,滞后从1开始,否则从0开始)。表中用“*”表示从每一列标准中选的滞后阶数。选择VAR对象工具
10、栏中的“View”|“Lag Structure”|“Lag Length Criteria”选项,在弹出的对话框中输入最大滞后阶数,然后单击“OK”按钮即可得到检验结果。三、VAR模型的检验四、脉冲响应函数在实际应用中,由于VAR模型是一种非理论性的模型,它无需对变量作任何先验性约束,因此在分析VAR模型时,往往不分析一个变量的变化对另一个变量的影响如何,而是分析当一个误差项发生变化,或者说模型受到某种冲击时对系统的动态影响,这种分析方法称为脉冲响应函数分析方法(impulse response function,IRF)。“Display Information”中输入冲击变量(Impul
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- VAR 模型 理论基础 及其 Eviews 实现 报告 ppt 课件
限制150内