2021-2022收藏资料新人教版八年级数学上册导学案全册.doc
《2021-2022收藏资料新人教版八年级数学上册导学案全册.doc》由会员分享,可在线阅读,更多相关《2021-2022收藏资料新人教版八年级数学上册导学案全册.doc(82页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版数学八上第11章 主备 李再杨 审核 班级: 姓名: 小组:数学导学案课题11.1全等三角形的判定(一) (1)一、 学习目标1、 掌握全等形、全等三角形及相关概念和全等三角形性质。2、 理解“平移、翻折、旋转”前后的图形全等。3、 熟练确定全等三角形的对应元素。二、 自学指导自学课本P23页,完成下列要求:1、 理解并背诵全等形及全等三角形的定义。2、 注意全等中对应点位置的书写。3、 理解并记忆全等三角形的性质。4、 自学后完成展示的内容,20分钟后,进行展示。三、展示内容:1、相同的图形放在一起能够。这样的两个图形叫做。2、能够的两个三角形叫做全等三角形。3、一个图形经过、后位置变
2、化了,但形状大小都没有改变,即平移、翻折旋转前后的图形。4、叫做对应顶点。叫做对应边。叫做对应角。5、全等三角形的对应边。相等。6、课本P4练习1、27、如图1,ABCDEF,对应顶点是,对应角是,对应边是。8、如图2,ABCCDA,AB和CD,BC和DA是对应边,写出其他对应边及对应角9、ABNACM,BC,ACAB,则BN,BAN=_,_=AN,_= AMC.10、如图,ABCDEC,CA和CD,CB和CE是对应边,ACD和BCE相等吗?为什么?小结:12三角形全等的判定(2)一、学习目标1、掌握三角形全等的判定(SSS)2、初步体会尺规作图3、掌握简单的证明格式二、自学指导认真阅读课本P
3、68页,完成下列要求:1、小组讨论探究1。(1)满足一个或两个条件的两个三角形是否全等。(2)满足3个条件时,两个三角形是否全等。注意分类。2、小组讨论探究2,交流合作,初步体会尺规作图(具体按第7页画图步骤)3、掌握三角形全等的判定之一(SSS)4、自主学习例1,初步体会证明的基本过程,并会利用判定(SSS)进行简单的推理,注意过程格式。5、利用判定(SSS)作一个角等于已知角,具体按第8页作法的具体步骤。6、自学后完成展示的内容,20分钟后,进行展示。三、展示内容:1、P8,练习2、如图,ABAD,CBCD,求证:ABCADC3、如图C是AB的中点,ADCE,CDBE,求证:ACDCBE小
4、结:1.2 全等三角形的判定(3)一、自学目标:1、会画一个三角形与已知三角形全等(根据两边与夹角对应相等)2、理解并掌握边角边的判定方法3、利用边角边判定方法解决实际问题4、探究具备“SSA”条件的两个三角形是否全等?二、自学指导认真阅读课本第810页的内容,完成下列要求:1、小组合作学习探究2,注意画图时的规范,用尺规作图注意画法。2、通过画图发现规律:的两个三角形全等。3、认真学习例2后,我们得到:在证明两个三角形中线段相等或角相等时通常通过证明来解决。4、自学后完成展示的内容,20分钟后,进行展示。三、展示内容:1、如图1已知ABF与DCE中,BC,BECF,ABCD,则2、如图2已知
5、ABAC,ADAE,12,求证:ABDACE证明:12()12()即BADCAE在ABD和ACE中()()()()3、要测量工件内槽宽,可以把两根钢条的中点连在一起,做成一个工具,只要测量出的长,就是内槽的宽,为什么?小结:11.2全等三角形的判定(三) (4)学习目标:1、 掌握全等三角形的判定方法-“ASA” “AAS”。2、 理解并运用 “ASA” “AAS” 解决相关问题。自学指导:1、自学课本1112页内容,完成下列要求:2、认真学习探究5的内容,按照课本提示的操作步骤动手操作,完成后,归纳探究5 反映的规律。3、认真阅读探究6,合作探究:要运用-“ASA”证明“两角和其中一角的对边
6、对应相等的两个三角形全等” 关键点是什么。4、学习例3,考虑要证明ACDABE还需要的条件。5、自学后完成要展示的内容,-20分钟后进行展示。展示内容:1、 指导2反映的规律是: 的两个三角形全等。 简写为:“ ”、或“ ”。2、指导3 中 关键点是: 3、完成课本13页12题。4、归纳三角形全等的判定方法: 5、如图:D在AB上,E在AC上,DC = EB, C = B求证: (1)ACD ABE (2) AC = AB小结:课后反思: 11.2全等三角形的判定HL的判定(5)一、 学习目标1、 掌握RT特殊的判定方法:HL判定方法2、 能够用HL判定方法来判定两个RT全等二、 自学指导认真
7、13阅读14页内容,要求掌握以下内容1、 前面学习的判定方法,直角三角形是否还能用?2、 理解画RTA,B,C,的过程,并由这个过程得出RT的判定方法:,简称3、 在学习探究时,一定要动手画图呀!4、 学习例4,想一想,要证BCAD,需要证明什么?5、 学后完成展示内容,20分钟后展示三、 展示内容1、 已知如图RTADC与RTBEC中,AB90,AC6cm,ADBE,CDCE,则AB2、 已知如图RTABC与RTDEF中,若ACFD,E=B=90,BC=DE, A=25,则F,D3、 如图ABCD,AEBC,DFBC,CEBF求证:(1)AEDF(2)CDAB小结:课后反思:11.3角的平分
8、线的性质(6)一、 学习目标1、 分用改尺规画出一个角的平分线(会说作法)2、 理解并掌握角平分线的性质3、 感受证明一个几何命题的方法与步骤二、 自学指导1、 自学课本19页(10分钟)(1) 说出探究中AE是DAE的平分线的理由(2) 作图时要读一步画一步2、 自学2021页思考前的内容(610分钟)(1) 独立动手完成探究,从而得出角平分线的性质:角的平分线上的点。(2) 注意体会角平分线的性质这个命题是如何画出图形,写出已知、求证的。三、 展示内容P19页练习1、 已知AOB的角平分线OC,点P在OC上,且点P到OA的距离为4cm,则点P到边OB的距离是2、 如图在ABC中,C=900
9、,AD平分BAC,BC10cm,BD6cm,则点D到AB的距离为3、 ABC中,ABAC,M为BC中点,MDAB于D,MEAC于E,求证:MDME4、 已知ABC内,ABC,ACB的角平分线交于点P,且PD、PE、PF分别垂直于BC、AC、AB于D、E、F三点,求证:PDPEPF小结:课后反思11.3角的平分线(7)学习目标:1、 掌握角平分线的判定2、 会运用角平分线的判定解决简单的问题。自学指导: 认真学习课本2122页的内容,完成下列要求:1、 找出角平分线判定的题设与结论,并与角平分线性质的题设和结论进行比较。2、 合作探究“思考”部分的内容:要确定集贸市场的准确位置 (1)根据角平分
10、线的判定,能否确定集贸市场在公路与铁路夹角的平分线上。(2)再依据集贸市场离两路交叉处的距离。3、 认真学习例题,注意辅助线的作法。4、 自学后,完成展示内容,20分钟后进行展示。展示内容:1、 课本22页练习。2、 角的内部 的点在角的平分线上。3、 如图,ABC的角平分线BM、CN交于点P,求证:点P到ABC三边的距离相等。 证明:过点P作PDAB于D,PEBC于E,PFAC于F。(把辅助线补充完整) BM是ABC的角平分线,点P在BM上PD = 。同理:PE = .PD = = .即点P到三边AB、BC、CA的距离相等。4、 求证:角的内部到角的两边距离相等的点,在角的平分线上。已知:如
11、图,PDAB于D,PE 于E,PD = .点P在OC上。求证:AOC = 证明:小结:12.1轴对称(一)(8)学习目标:1、理解什么是轴对称图形;2、理解什么是“两个图形关于一条直线对称”;3、能够说出轴对称与轴对称图形的区别与联系。自学指导1、自学29 页,重点掌握_,完成30页练习;2、自学课本30页,图121-3是_个图形, 关系。请找出图中A、B、C的对称点A、B、C3、轴对称图形与轴对称的区别与联系展示内容1、如果一个图形沿一条直线折叠,直线两旁的部分能够_,这个图形就叫做_,这条直线就是它的_。2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形_,那么就说这两个图形_。3、
12、教材P30练习与P31练习。4、教材P30与P31的思考,找同学回答。5、教材P36习题12.1的1、2.小结12.1 轴对称(9)一、 学习目标1、 识记线段垂直平分线的定义2、 理解轴对称图形的性质3、 掌握并会用线段垂直平分线的性质二、 自学指导(15分钟)认真阅读P31页思考P32页探究前的内容(1) 思考部分可在课本上沿MN对折或用测量的方法进行探究(2) 探究部分要动手操作,找出你发现的规律:P1A,P2A,(特别注意l与线段AB的关系)由此可得到线段垂直平分线的性质:三、 展示内容1、 如图,ABC中,AD垂直平分BC,AB5,则AC2、 ABC与A,B,C,关于直线l对称,且A
13、B4cm,则A,B,3、 如图ABC与DEF关于直线MN对称,直线MN与线段AD的关系是4、 如图ABC中BC的垂直平分线交AB于E,若ABC的周长为10,BC4,则ACE周长为5、 如图ADBC,BDDC,点C在AE的垂直平分线上,AB、CE的长度有什么关系,AB+BD与DE有什么关系?小结:课后反思:课题:12.1轴对称 (三) (10)学习目标:1、掌握线段垂直平分线的判定2、熟练运用线段垂直平分线的性质和判定解决实际问题。自学指导:1、自学课本3334页的内容,完成下列要求:2、合作探究:课本探究的内容中,思考:箭尾应放在橡皮筋的什么位置。3、自学后完成要展示的内容,-20分钟后进行展
14、示。展示内容:1、如图,ADBC,BD=DC,点C在AE的垂直平分线上,AB,AC,CE的长度有什么关系?AB+BD与DE有什么关系?2、如图,AB=AC, MB=MC,直线AM是线段BC的垂直平分线吗?3、试证:到一条线段距离相等的点,在这条线段的垂直平分线上。4、三角形中,分别画出边AB ,BC的垂直平分线,若这两条垂直平分线交于点O,则点O是否在垂直平分线上。说明理由: 小结:课后反思: 12.1轴对称(11)一、 学习目标1、 会用尺规作图,画线段的垂直平分线2、 会画轴对称图形的对称轴二、 自学指导1、 自学课本3435页的内容(78分钟)2、 阅读例题,注意线段垂直平分线的画法,边
15、看边动手操作3、 作轴对称图形的对称轴,就是作出的垂直平分线三、 展示内容1、 线段垂直平分线的画法(保留痕迹)已知:线段AB,求作:线段AB的垂直平分线(1) 以A为圆心,以大于1/2AB和长为半径作弧(2) 以为圆心,以的长为半径作弧,两弧交于,两点。(3) 作直线,则为所求的直线2、 课本练习1、2、33、 下列各图形是轴对称图形吗?如果是,画出它们的一条对称轴4、 平面内两条相交直线是轴对称图形吗?如果是,它有几条对称轴?画画看。课后反思12.2.1作轴对称图形(12)学习目标:会画一个图形关于一条直线的轴对称图形自学指导:自学课本3941页的内容,完成以下要求:1、 结合39 页第一
16、自然段的内容,动手操作(1)、利用线段中 线的知识验证,左脚印与右脚印对应两点P与P的连线是否被折痕垂直平分(2)、观察对比左脚印与右脚印的形状、大小是否变化2、认真阅读教材40页例1,边看边操作,在练习本上完成操作的步骤,然后合作交流,归纳已知一条直线画一个几何图形的轴对称图形的技巧3、学生自学后,完成展示的内容,20分钟后学生分组展示展示内容1、 一个图形与它的轴对称图形的_、_完全相同;2、 连接一对对应点的线段被_垂直平分3、 几何图形都可以看做由点组成,只要分别作出这些点关于对称轴的_点,再连接这些_点,就可以得到原图形的轴对称图形;4、 对于一些由直线、线段或射线组成的图形,只要作
17、出图形中的一些 的对称点,连接这些对称点,就可以得到原图形的_图形;5、 完成教材41页练习12;6、 下面哪些汉字经轴对称变换后所成的整体图形仍是汉字日 月 土 木 人A B. C. D.7、李明从镜子里看到自己身后的钟表上的时间是8点35分,请问钟表上显示的实际时间是 ().:.:.:.:课后反思:12.2.1作轴对称图形(13)一、 学习目标会用轴对称图形的性质解决实际问题二、 自学指导学习课本42页内容,完成下列要求:1、 学习探究的内容,将探究中的问题转化为数学问题2、 (1)若两镇A、B在管道异侧,怎样确定泵站的位置(2)管道同侧两点A、B,利用轴对称的性质能否转化为异侧两点A、B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 收藏 资料 新人 八年 级数 上册 导学案全册
限制150内