初中数学苏科七下第11章测试卷(2).docx
《初中数学苏科七下第11章测试卷(2).docx》由会员分享,可在线阅读,更多相关《初中数学苏科七下第11章测试卷(2).docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第11章测试卷(2)一、选择题1下列各式中:a+3;3x5;y0;m1,属于不等式的有()A1个B2个C3个D4个2当a为()值时,不等式a(x3)2(ax)的解集为x4Aa=8Ba=8Ca8Da83不等式组的解集在数轴上表示为()ABCD4若ab,且c为任意有理数,则下列不等式正确的是()AacbcBacbcCac2bc2Da+cb+c5若是一元一次不等式,则m值为()A0B1C2D36已知关于x的方程3xa+1=2x1的解为负数,则a的取值范围是()Aa2Ba2Ca2Da27某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为
2、60元的票数的两倍,则购买这两种票最少共需要()A12120元B12140元C12160元D12200元8下列不等式组中,是一元一次不等式组的是()ABCD9若不等式组的解集为x1,则a的取值范围为()Aa1Ba1Ca2Da=210某企业为了适应市场经济的需要,决定进行人员结构调整,该企业现有生产性行业人员100人,平均每人全年可创造产值a元现欲从中分流出x人去从事服务性行业,假设分流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务行业的人员平均每人全年可创造产值3.5a元如果要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的
3、全年总产值不少于分流前生产性行业的全年总产值的一半,则分流后从事服务性行业的人数为()A13或14B14或15C15或16D16或1711一组学生决定共同买一套录音带,后来两个学生退出了,其他学生每人只好多付了1元钱如果每人所付的钱数是整数,而录音带的价格在100元和120元之间,那么最终有多少个学生分担了这笔费用()A12B13C14D1512已知且1xy0,则k的取值范围为()A1kBk1C0k1D0k13不等式2x+35x的解集在数轴上表示正确的是()ABCD14用数轴表示不等式x2的解集正确的是()ABCD15一个不等式组中两个不等式的解集在同一数轴上的表示如图所示,这个不等式组的解集
4、为()Ax1Bx1C1x1Dx1二、填空题16若ab,则5a 5b, (“”“”)17若关于x,y的二元一次方程组的解满足x+y,则满足条件的m的所有正整数值为 18参加保险公司的汽车保险,汽车修理费是按分段赔偿,具体赔偿细则如下表某人在汽车修理后在保险公司得到的赔偿金额是2000元,那么此人的汽车修理费是2687.5元汽车修理费x元赔偿率0x50060%500x100070%1000x300080%19不等式组的解集是 20附加题学生若干人,住若干间宿舍,如果每间住4人,则余19人没有住处,如果每间住6人,则有一间宿舍不空也不满,求有多少间宿舍?多少名学生 三、解答题21写出下列各数轴上所表
5、示的不等式的解集:22解下列不等式,并把它们的解集在数轴上表示出来:(1)3x3;(2)x13x+5;(3)5x+27x+20;(4)x2+x23在关于x1,x2,x3的方程组中,已知a1a2a3,请将x1,x2,x3按从大到小的顺序排列起来24利用不等式的性质解下列不等式,并在数轴上表示解集(1);(2)4xx+525某地举行京剧艺术节,演出的票价由2元到100元多种,某团体需购6元和10元的票共140张,其中票价10元的票数不少于票价6元的票数的2倍,问:这两种票各需购买多少张,所花的钱最少?最少需多少钱?26利民便利店欲购进A、B两种型号的LED节能灯共200盏销售,已知每盏A、B两种型
6、号的LED节能灯的进价分别为18元、45元,拟定售价分别为28元、60元(1)若利民便利店计划销售完这批LED节能灯后能获利2200元,问甲、乙两种LED节能灯应分别购进多少盏?(2)若利民便利店计划投入资金不超过6900元,且销售完这批LED节能灯后获利不少于2600元,请问有哪几种购货方案?并探究哪种购货方案获利最大27某工厂计划生产A,B两种产品共10件,其生产成本和利润如表A种产品B种产品成本(万元/件)25利润(万元/件)13(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少?(2)若工厂计划投入资金不多于34万元,且获利多于14万元,问工厂有哪几种生产方案?答案1下列各式
7、中:a+3;3x5;y0;m1,属于不等式的有()A1个B2个C3个D4个【考点】C1:不等式的定义 【专题】选择题【难度】易【分析】主要依据不等式的定义用“”、“”、“”、“”、“”等不等号表示不相等关系的式子是不等式来判断【解答】解:根据不等式的定义,只要有不等符号的式子就是不等式,所以为不等式,共有3个故选C【点评】(1)从定义上来看,不等式是表示不等关系的式子;而方程是含有未知数的等式;(2)从符号上来看,不等式是用“”“”“”或“”来表示的;而方程是用“=”来连接两边的式子的;(3)从是否含有未知数上来看,不等式可以含有未知数,也可以不含有未知数;而方程则必须含有未知数2当a为()值
8、时,不等式a(x3)2(ax)的解集为x4Aa=8Ba=8Ca8Da8【考点】C3:不等式的解集 【专题】选择题【难度】易【分析】整理原不等式得到:(a+2)x5a,然后根据“不等式a(x3)2(ax)的解集为x4”来求a的取值范围【解答】解:由原不等式,得(a+2)x5a,不等式a(x3)2(ax)的解集为x4,解得a=8故选:A【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错解不等式要依据不等式的基本性质:在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以
9、或除以同一个负数不等号的方向改变3不等式组的解集在数轴上表示为()ABCD【考点】C4:在数轴上表示不等式的解集 【专题】选择题【难度】易【分析】直接把各不等式的解集在数轴上表示出来即可【解答】解:不等式组的解集在数轴上表示为:故选B【点评】本题考查的是在数轴上表示不等式组的解集,熟知:“小于向左,大于向右”是解答此题的关键4若ab,且c为任意有理数,则下列不等式正确的是()AacbcBacbcCac2bc2Da+cb+c【考点】C2:不等式的性质 【专题】选择题【难度】易【分析】根据不等式的性质进行选择即可【解答】解:ab,且c为任意有理数,a+cb+c,故选D【点评】本题考查了不等式的性质
10、,掌握不等式的性质三条性质是解题的关键5若是一元一次不等式,则m值为()A0B1C2D3【考点】C5:一元一次不等式的定义 【专题】选择题【难度】易【分析】根据一元一次不等式的定义,未知数的次数是1,所以2m1=1,求解即可【解答】解:根据题意2m1=1,解得m=1故选B【点评】本题主要是对一元一次不等式定义的“未知数的最高次数为1次”这一条件的考查6已知关于x的方程3xa+1=2x1的解为负数,则a的取值范围是()Aa2Ba2Ca2Da2【考点】C6:解一元一次不等式;85:一元一次方程的解 【专题】选择题【难度】易【分析】先用a表示出x的值,再由x为负数即可得出a的取值范围【解答】解:解方
11、程3xa+1=2x1得,x=a2,x为负数,a20,解得a2故选D【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键7某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要()A12120元B12140元C12160元D12200元【考点】C9:一元一次不等式的应用 【专题】选择题【难度】易【分析】设票价为60元的票数为x张,票价为100元的票数为y张,根据题意可列出 ,当购买的60元的票越多,花钱就越少,从而可求解【解答】解:设票价为60元的票数为x张,票价为10
12、0元的票数为y张,故可得:x由题意可知:x,y为正整数,故x=46,y=94,购买这两种票最少需要6046+10094=12160故选C【点评】本题考查一元一次不等式组的应用,读懂题意列出不等式关系式,本题关键是要知道当购买的60元的票越多,花钱就越少即可求解8下列不等式组中,是一元一次不等式组的是()ABCD【考点】CA:一元一次不等式组的定义 【专题】选择题【难度】易【分析】一元一次不等式组中指含有一个相同的未知数,并且所含未知数的项的最高次数是1次,不等式的两边都是整式,根据以上内容判断即可【解答】解:A、是一元一次不等式,故本选项正确;B、含有两个未知数,不是一元一次不等式组,故本选项
13、错误;C、未知数的次数是2,不是一元一次不等式组,故本选项错误;D、第二个不等式不是整式,即不是一元一次不等式组,故本选项错误;故选A【点评】本题考查了对一元一次不等式组的定义的应用,主要考查学生的理解能力和判断能力9若不等式组的解集为x1,则a的取值范围为()Aa1Ba1Ca2Da=2【考点】CB:解一元一次不等式组;C3:不等式的解集 【专题】选择题【难度】易【分析】首先分别计算出两个不等式的解集,再根据小小取小可确定1,再解即可【解答】解:,由得:x,由得:x1,不等式组的解集为x1,1,解得:a2,故选:C【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取
14、小;大小小大中间找;大大小小找不到10某企业为了适应市场经济的需要,决定进行人员结构调整,该企业现有生产性行业人员100人,平均每人全年可创造产值a元现欲从中分流出x人去从事服务性行业,假设分流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务行业的人员平均每人全年可创造产值3.5a元如果要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业的全年总产值的一半,则分流后从事服务性行业的人数为()A13或14B14或15C15或16D16或17【考点】CE:一元一次不等式组的应用 【专题】选择题【难度】
15、易【分析】设分流后从事服务性行业的人数为x,根据要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业的全年总产值的一半,可列不等式组求解【解答】解:设分流后从事服务性行业的人数为x,解得,即14x16,x是正整数分流后从事服务性行业的人数为15人或16人故选C【点评】本题考查理解题意能力,关键是看到分流后,从事生产性的人数和服务性的人数创造的产值和原来生产性行业的全年总产值的比较,从而可列方程求解11一组学生决定共同买一套录音带,后来两个学生退出了,其他学生每人只好多付了1元钱如果每人所付的钱数是整数,而录音带的价格在100
16、元和120元之间,那么最终有多少个学生分担了这笔费用()A12B13C14D15【考点】CE:一元一次不等式组的应用 【专题】选择题【难度】易【分析】因为每人付的钱为整数,所以两位同学付钱之和一定为偶数,若退出两人,剩下的人数一定是偶数,以上条件可以得出学生数量总数是偶数,故答案是12或16,求出人数是整数的就符合题意【解答】解:因为每人付的钱为整数,所以两位同学付钱之和一定为偶数,若退出两人,剩下的人数一定是偶数以上条件可以得出学生数量总数是偶数故B,D选项不正确A代入,得每人承担9元,共12人,原先每人承担8元,13.5人(舍去),故A选项不正确C代入,每人承担8元,共14人,原先每人承担
17、7元,16人承担,成立故选C【点评】本题考查理解题意能力,关键是看到钱数和人数都是整数12已知且1xy0,则k的取值范围为()A1kBk1C0k1D0k【考点】CB:解一元一次不等式组;97:二元一次方程组的解 【专题】选择题【难度】易【分析】先根据方程组将两式相减,得到xy=12k,再代入1xy0,得到关于k的不等式组,进而得出k的取值范围【解答】解:(2x+y)(x+2y)=(2k+1)4k,xy=12k,又1xy0,112k0,解得k1故选:B【点评】本题主要考查了解一元一次不等式组以及解二元一次方程组,解决问题的关键是根据方程组求得xy=12k,运用整体思想进行代入计算13不等式2x+
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 苏科七 下第 11 测试
限制150内