参数估计点ppt课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《参数估计点ppt课件.ppt》由会员分享,可在线阅读,更多相关《参数估计点ppt课件.ppt(44页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、参参 数数 估估 计计两种总体分布未知的情形两种总体分布未知的情形n总体分布的形式是已知的总体分布的形式是已知的,但其中包含未,但其中包含未知参数。我们的任务是通过样本来估计这知参数。我们的任务是通过样本来估计这些未知参数参数估计问题些未知参数参数估计问题n总体分布的形式是未知的总体分布的形式是未知的。我们的任务是。我们的任务是通过样本来估计总体的分布非参数估计通过样本来估计总体的分布非参数估计问题。问题。n本课程只讨论参数估计问题。本课程只讨论参数估计问题。未未知知,的的指指数数分分布布,其其中中参参数数是是服服从从参参数数为为设设总总体体0 X而而估估计计总总体体的的分分布布的的取取值值,
2、从从,来来估估计计我我们们的的任任务务是是根根据据样样本本 这这是是一一个个参参数数估估计计问问题题的的一一个个样样本本,是是总总体体 XXXn,1参参 数数 估估 计计o 点估计点估计o 区间估计区间估计o 估计量的评选标准估计量的评选标准估估参参数数。是是待待的的形形式式为为已已知知,的的分分布布函函数数设设总总体体 );(xFX应应的的样样本本值值。是是相相的的一一个个样样本本,是是nnxxXXX,11。来来估估计计未未知知参参数数值值,用用它它的的观观察察构构造造一一个个适适当当的的统统计计量量 ),(),(11nnxxXX;估计量估计量的的为为我们称我们称 ),(1nXX。估估计计值
3、值的的为为称称 ),(1nxx什么是点估计什么是点估计对未知参数进行对未知参数进行定值估计定值估计的方法称为点估计的方法称为点估计随机变量随机变量数组数组点点 估估 计计 矩估计矩估计 极大似然估计极大似然估计 矩估计法矩估计法概概率率密密度度为为为为连连续续型型随随机机变变量量,其其设设X,1是是待待估估参参数数其其中中k klEXll, 2 , 1, 存存在在设设 分分布布律律为为为为离离散散型型随随机机变变量量,其其X.,),(klkll211 则则),;(1kxf ),;(1kxPxXP .,1的样本的样本为来自为来自XXXn总体的 阶矩l由辛钦大数定律知由辛钦大数定律知 nililX
4、nA11P,l ., 2 , 1kl ., 1,llllAklA 估估计计用用令令所所以以 矩估计的原理矩估计的原理 nililXnA11样本的样本的 阶矩阶矩l kkkkkAAA ,2121222111 nkknnXXXXXXXXX,2121222111 的的联联立立方方程程组组,个个未未知知参参数数这这是是包包含含kk 1即即,记记为为从从中中解解出出方方程程组组的的解解,1k 的的估估计计量量,分分别别作作为为,用用kk 11例例 1 设某炸药厂一天中发生着火现象的次数设某炸药厂一天中发生着火现象的次数X服从服从 (用用矩矩法法)。试试估估计计参参数数未未知知,有有以以下下样样本本值值;
5、的的泊泊松松分分布布,参参数数为为 250126225490756543210knkk次着火天数次着火天数发生发生着火的次数着火的次数, X令令 x 则则。所所以以估估计计值值22.1 22. 1)16901750(2501 niiXXnA111,1 EX样本容量样本容量为为250250,1是一个样本是一个样本未知未知设总体设总体nXXbabaUX的矩估计量。的矩估计量。求:求:ba,21baEX 2ba 令令4)(12)(22baab 22EX 2)(EXDX 4)(12)(22baab 例例2解:解:1A 2A ,21Aba 即即)(12212AAab )(12,22121AAabAba
6、即即 )(32121AAAa )(3 2121AAAb 解得解得: )(312 niiXXnX niiXXnX12)(3212AA )(1212XnXnnii niiXXn12)(12121XXnnii 是一个样本;是一个样本;未知,又设未知,又设,但但都存在,且都存在,且,方差,方差的均值的均值设总体设总体nXXX, , 01222 的的矩矩估估计计量量。求求:2, 解:解:,2211AA 令令,2221AA 即即,1XA 所所以以2122AA 22 EX 222)( EXDX2121XXnnii 21)(1XXnnii 例例3,1 EX总体均值与方差的矩估计量的表达式与总体分布形式无关!总
7、体均值与方差的矩估计量的表达式与总体分布形式无关!未知;未知;特别,若特别,若22, ),N( X niiXXnX122)(1, 则则解:解:例例4的的矩矩估估计计个个样样本本,试试求求参参数数是是从从该该总总体体中中抽抽取取的的一一未未知知,的的指指数数分分布布,其其中中服服从从参参数数为为设设总总体体 nXXXX,021 X1 极大似然估计极大似然估计极大似然思想极大似然思想 有两个射手,一人的命中率为有两个射手,一人的命中率为0.9,0.9,另一人的命中另一人的命中率为率为0.1,0.1,现在他们中的一个向目标射击了一发,现在他们中的一个向目标射击了一发,结果命中了,估计是谁射击的?结果
8、命中了,估计是谁射击的? 一般说,事件一般说,事件A发生的概率与参数发生的概率与参数有关,有关, 取值不同取值不同,则,则P(A)也不同。因而应记也不同。因而应记事件事件A发生的概率为发生的概率为P(A| ).若若A发生了,则认为此时的发生了,则认为此时的 值应是在值应是在 中使中使P(A| ) 达到最大达到最大的那一个的那一个。这就是极大似然思想。这就是极大似然思想 属属离离散散型型,其其分分布布律律若若总总体体X)1 niixp1);( ),;(xpxXP可可能能取取值值的的范范围围。是是为为待待估估参参数数,的的形形式式为为已已知知, 的的联联合合分分布布律律:则则的的样样本本是是来来自
9、自设设nnXXXXX,11的概率为的概率为取取易知样本易知样本nnxxXX,11,11的的一一个个样样本本值值是是又又设设nnXXxx);,()(1 nxxLL ., );(1 niixp);,()(1 nxxLL ., );(1 niixp有关有关观察值的概率与观察值的概率与取取易知样本易知样本 nnxxXX,111111);,()(pxxLLn 若2212);,()(pxxLLn 3313);,()(pxxLLn 1 2 3 个个不不同同的的估估计计值值的的是是未未知知参参数数3 321ppp 选哪个估计值比较合理选哪个估计值比较合理);,()(1 nxxLL .)(.称称为为样样本本的的
10、似似然然函函数数的的函函数数它它是是 L使使得得:的的估估计计值值,即即取取,作作为为的的参参数数达达到到最最大大挑挑选选使使概概率率固固定定 );,(,11nnxxLxx极大似然法原理:极大似然法原理:);,(max);,(11 nnxxLxxL );,(,11nnxxxx 有关,记为有关,记为与与。极极大大似似然然估估计计值值的的称称其其为为参参数数 ., );(1 niixp.),;()2为为待待估估参参数数的的形形式式已已知知,属属连连续续型型,其其概概率率密密度度若若总总体体 xfX的的联联合合密密度度:则则nXX,1 niixf1);( 似似为为:维维立立方方体体)内内的的概概率率
11、近近的的别别为为的的邻邻域域(边边长长分分落落在在机机点点的的一一个个样样本本值值,则则随随是是相相应应设设ndxdxxxXXXXxxnnnnn,),(),(,11111 );(1iniidxxf ix)(ixf 应当选取使得应当选取使得的前提下,自然的前提下,自然,在得到观测值在得到观测值nxxx21的估计值的估计值值作为未知参数值作为未知参数达到最大的达到最大的 );(1iniidxxf 大大样本观测值的可能性最样本观测值的可能性最定的那个定的那个等于这个值时,出现给等于这个值时,出现给因为当未知参数因为当未知参数 而变,故只需考虑:而变,故只需考虑:不随不随但但 iidx , );();
12、,()(11 niinxfxxLL 。似似然然函函数数称称为为样样本本的的的的最最大大值值,这这里里)( L);,(max);,( 11 nnxxLxxL 若若。极极大大似似然然估估计计值值的的为为则则称称 ),(1nxx 。极极大大似似然然估估计计量量的的为为称称 ),(1nXX );(),;(可由下式求得:可由下式求得:可微,故可微,故关于关于一般,一般, xfxp0)( ddL也也可可从从下下述述方方程程解解得得:大大似似然然估估计计的的极极处处取取到到极极值值,因因此此在在同同一一与与又又因因 )(ln)(LL0)(ln Ldd-对数似然方程对数似然方程-似然方程似然方程-似然方程似然
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 参数估计 ppt 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内