新人教版七年级数学上册总复习课件ppt.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《新人教版七年级数学上册总复习课件ppt.ppt》由会员分享,可在线阅读,更多相关《新人教版七年级数学上册总复习课件ppt.ppt(43页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 新人教版新人教版 七年级数学上册七年级数学上册 (各章知识点课件)(各章知识点课件)把一些数放在一起,就组成一个数的集合,简称数集(把一些数放在一起,就组成一个数的集合,简称数集(set of number)。)。所有正数组成的集合,叫所有正数组成的集合,叫 做正数集合;做正数集合;所有负数组成的集合叫做负数集合;所有负数组成的集合叫做负数集合;所有整数组成的集合叫整数集合;所有整数组成的集合叫整数集合;所有分数组成的集合所有分数组成的集合叫分数集合;叫分数集合;所有有理数组成的集合叫有理数集合;所有有理数组成的集合叫有理数集合;所有正整数和零组成的集合叫做自然数集。所有正整数和零组成的集合
2、叫做自然数集。 1.1正数和负数正数和负数(1)正数:大于零的数叫做正数。如:)正数:大于零的数叫做正数。如:1,0.25,69。 负数:小于零的数叫做负数。如:负数:小于零的数叫做负数。如:-1,-3.8,-1/4,-25。 零:零: 零既不是正数也不是负数零既不是正数也不是负数 整数:正数、整数:正数、0、负数、负数(2)用正负数表示两个意义相反的量。)用正负数表示两个意义相反的量。第一章第一章 有理数有理数(1)有理数的分类有理数的分类(3)相反数:只有符号不同的两个数叫做互为相反数。)相反数:只有符号不同的两个数叫做互为相反数。 如如2与与-2,-5与与5,a与与-a等。等。 通常用通
3、常用a和和-a表示一对相反数表示一对相反数 若若a与与b互为相反数,则互为相反数,则a+b=0 互为相反数的两个数的绝对值相等,即互为相反数的两个数的绝对值相等,即|-a|=|a| 若若|a|=|b|,则则a=b,或或a=-b(a与与b互为相反数互为相反数) (2)、数轴)、数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。的定义:规定了原点、正方向和单位长度的直线叫做数轴。 数轴的三要素数轴的三要素 、 、 。原点原点正方向正方向单位长度单位长度1.2有理数有理数任何一个有理数都可以用数轴上的点表示。任何一个有理数都可以用数轴上的点表示。有理数的两种分类:有理数的两种分类:正整数正整数
4、0 0有理数有理数负整数负整数正分数正分数负分数负分数分数分数整数整数正数正数负数负数正整数正整数正分数正分数有理数有理数负整数负整数负分数负分数0 0.非负数非负数 一个正数的绝对值是一个正数的绝对值是 ,一个负数的绝对值是,一个负数的绝对值是 ,0的绝对值是的绝对值是 。是它本身是它本身它的相反数它的相反数0(4)、绝对值:数轴上表示数)、绝对值:数轴上表示数a的点与原点的距离叫做数的点与原点的距离叫做数a的绝对值,符号表示为的绝对值,符号表示为( |a| ) 注意:注意:|a|0即对任意有理数即对任意有理数a,它的绝对值是非负数,它的绝对值是非负数 绝对值最小数为绝对值最小数为0(5)、
5、有理数数的比较:)、有理数数的比较:在数轴上表示的两个数右边的总在数轴上表示的两个数右边的总 比左边的大。比左边的大。两个正数比较大小,绝对值大的数大;两个正数比较大小,绝对值大的数大; 两个负数绝对值大的反而小。两个负数绝对值大的反而小。正数都大于零,负数都小于零,正数大于负数。正数都大于零,负数都小于零,正数大于负数。作差法:作差法:a-b0ab作商法:作商法:ab1,b0ab有理数的运算有理数的运算符号符号计算绝对值计算绝对值加法加法同号同号异号异号减法减法减去一个数等于减去一个数等于乘法乘法同号同号异号异号除法除法同号同号异号异号除以一个数等于除以一个数等于乘方乘方取相同的符号取相同的
6、符号绝对值相加绝对值相加取绝对值大的符号取绝对值大的符号 较大绝对值减较小绝对值较大绝对值减较小绝对值得正得正得正得正得负得负得负得负绝对值相乘绝对值相乘绝对值相除绝对值相除加上这个数的相反数加上这个数的相反数乘以这个数的倒数乘以这个数的倒数)( babababa1aaaaan (n个个a相乘)相乘)nnaa22)(1212)(nnaa注意:注意:-14= (1111)=1(-1)4=(-1) (-1) (-1) (-1)=1运算律运算律1 1、加法交换律:、加法交换律:2 2、加法结合律:、加法结合律:3 3、乘法交换律:、乘法交换律:4 4、乘法结合律:、乘法结合律:5 5、分配律:、分配
7、律:有理数混合运算的运算顺序有理数混合运算的运算顺序先算乘方,再算乘除,最后算加减。先算乘方,再算乘除,最后算加减。如果有括号就先算括号里面的。如果有括号就先算括号里面的。同级运算从左到右进行。同级运算从左到右进行。abba)(cbacbabaab )(bcaabc acabcba )((4)、科学计数法)、科学计数法 1、 把一个绝对值大于10的数表示成a10的形式(a是整数数位只有一位的数,n是比原整数数位小1的正整数),如236000000=2.36108;-2450000=-2.45106 2、将用科学计数法表示的数还原,如:1.52104=15200(5)、有效数字、近似数)、有效数
8、字、近似数 一个数字从左边第一个非0的数字起到末位止,叫做这个数的有效数字。如:0.003020有四个有效数字,分别是3、0、2、0。第二章第二章 整式的加整式的加减减1.整式的概念整式的概念:(1)单项式单项式:都是数字与字母的乘积的代数式叫做单项式。都是数字与字母的乘积的代数式叫做单项式。 单项式的系数:单项式中的数字因数。单项式的系数:单项式中的数字因数。 单项式的次数:单项式中所有的字母的指数和单项式的次数:单项式中所有的字母的指数和注意注意圆周率圆周率是常数;是常数;只含有字母因式的只含有字母因式的单项式的系数是单项式的系数是1或或1时,时,“1”通常通常省略不写,如省略不写,如x2
9、,a2b等;等;单项式次数只与字母指数有关。如单项式次数只与字母指数有关。如23a6的次数为的次数为6单项式的系数是带分数时,应化成假分数。单项式的系数是带分数时,应化成假分数。单项式的系数包括它前面的符号。单项式的系数包括它前面的符号。 单独的一个数字是单项式,它的系数是它本身单独的一个数字是单项式,它的系数是它本身;非零常数非零常数的次数是的次数是0。 (2)多项式:几个单项式的和叫做多项式。多项式:几个单项式的和叫做多项式。1、多项式中的每一个单项式叫做多项式的项。、多项式中的每一个单项式叫做多项式的项。2、多项式中不含字母的项叫做常数项。、多项式中不含字母的项叫做常数项。3、一个多项式
10、有几项,就叫做几项式。、一个多项式有几项,就叫做几项式。4、多项式的每一项都包括项前面的符号。、多项式的每一项都包括项前面的符号。5、多项式中次数最高的项的次数,叫做这个多项式的次数。、多项式中次数最高的项的次数,叫做这个多项式的次数。 (3)多项式排列多项式排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母的降幂排列叫做把多项式按这个字母的降幂排列把一个多项式按某一个字母的指数从小到大的顺序排列起来,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母的升幂排列叫做把多项式按这个字母
11、的升幂排列(4)单项式与多项式统称整式。)单项式与多项式统称整式。 (分母含有字母的代数式不是整式)(分母含有字母的代数式不是整式)2. 同类项:所含字母相同同类项:所含字母相同,并且相同字母的指数也相同的项并且相同字母的指数也相同的项叫做同类项。叫做同类项。几个常数项也是同类项。几个常数项也是同类项。3.把多项式中的同类项合并成一项把多项式中的同类项合并成一项,叫做合并同类项叫做合并同类项合并同类项法则合并同类项法则:合并同类项后合并同类项后,所得项的系数是合并前各同类所得项的系数是合并前各同类项的系数的和项的系数的和,且字母部分不变。且字母部分不变。注意:.若两个同类项的系数互为相反数,则
12、两项的和等于零, 如:-3ab2+3ab2=(-3+3)ab2=0ab2=0。 .多项式中只有同类项才能合并,不是同类项不能合并。 .通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列, 如:-4x2+5x+5或写5+5x-4x2。4.整式的加减就是整式的加减就是合并同类项合并同类项的过程。的过程。 5.整式去括号变化规律整式去括号变化规律:(1).如果括号外的因数是如果括号外的因数是正数正数,去括号后原括号内,去括号后原括号内各项的符号与原来的符号各项的符号与原来的符号相同相同;如:;如:+(x-3)=x-3(2).如果括号外的因数是如果括号外的因数是
13、负数负数,去括号后原括号内,去括号后原括号内各项的符号与原来的符号各项的符号与原来的符号相反相反。如。如:-(x-3)=-x+36整式加减的运算法则:整式加减的运算法则: 一般地,几个整式相加减,如果有括号就先去括号,一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项然后再合并同类项.第三章第三章 一元一次方程一元一次方程 1:等式的概念:用等号表示相等关系的式子叫做等式等式的概念:用等号表示相等关系的式子叫做等式.2:等式的基本性质等式的基本性质(1)等式两边加上等式两边加上(或减去或减去)同一个数或同一个数或同一个代数式同一个代数式,所得的结果仍是等式所得的结果仍是等式. 即若
14、即若a=b,则,则 ac=bc.(2) 等式两边乘以等式两边乘以(或除以或除以)同一个不为同一个不为0的数或代数式的数或代数式, 所所得的结果仍是等式得的结果仍是等式. 如果如果a=b,那么那么ac=bc; 如果如果a=b(c0),那么那么a/c=b/c此外等式还有其它性质此外等式还有其它性质: 若若a=b,则,则b=a. 若若a=b,b=c,则则a=c.说明说明:等式两边不可能同时除以为零的数或式子等式两边不可能同时除以为零的数或式子 等式的性质是解方程的重要依据等式的性质是解方程的重要依据.3:方程的概念:含有未知数的等式叫方程,方程中方程的概念:含有未知数的等式叫方程,方程中一定含有未知
15、数,而且必须是等式,二者缺一不可一定含有未知数,而且必须是等式,二者缺一不可.说明说明:代数式不含等号代数式不含等号,方程是用等号把代数式连接而成方程是用等号把代数式连接而成的式子的式子,且其中一定要含有未知数且其中一定要含有未知数.4:一元一次方程的概念:只含有一个未知数一元一次方程的概念:只含有一个未知数,并且未知数的次并且未知数的次数是数是1的方程叫一元一次方程的方程叫一元一次方程.任何形式的一元一次方程任何形式的一元一次方程,经变经变形后形后,总能变成形为总能变成形为ax=b(a0,a、b为已知数为已知数)的形式的形式,这种形这种形式的方程叫一元一次方程的一般式式的方程叫一元一次方程的
16、一般式.注意:注意:a0这个重要条件这个重要条件,它也是判断方程是否是一元一次方它也是判断方程是否是一元一次方程的重要依据程的重要依据. 一般地,如果不设定一般地,如果不设定a0,则关于,则关于x的方程的方程ax=b的解有的解有如下讨论:如下讨论:当当a0时,方程有唯一解时,方程有唯一解 x=b/a;当当a=0,b=0时,方程的解为一切数;时,方程的解为一切数;当当a=0,b0时,方程无解。时,方程无解。关于绝对值方程关于绝对值方程|x|=a的解:当的解:当a0时,时,x=a; 当当a0时,无解。时,无解。5:方程的解与解方程方程的解与解方程:使方程两边相等的未使方程两边相等的未知数的值叫知数
17、的值叫做方程的解做方程的解,求方程解的过程叫求方程解的过程叫解方程解方程. 6:关于移项关于移项:移项实质是等式的基本性质移项实质是等式的基本性质1的的运用运用.移项时移项时,一定记住要改变所移项的符号一定记住要改变所移项的符号. 7:解一元一次方程的一般步骤解一元一次方程的一般步骤:去分母、去去分母、去括号、移项、合并同类项、将未知数的系括号、移项、合并同类项、将未知数的系数化为数化为1.(具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用.)说明说明:去分母时去分母时,易漏乘方程左、易漏乘方程左、右两边代数式中的某些项右两边代数式中
18、的某些项.8:方程的检验方程的检验检验某数是否为原方程的解,应将该检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看数分别代入原方程左边和右边,看两两边的值是否相等边的值是否相等.注意:应代入原方程的左、右两边分别计注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边和右边算,不能代入变形后的方程的左边和右边. 1、仔细审题,透彻理解题意。即弄清已知量、未、仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如知量及其相互关系,并用字母(如X)表示题中的)表示题中的一个合理未知数(如题中所求的量);一个合理未知数(如题中所求的量); 2、根据题意找出能
19、够表示应用题全部含义的一个、根据题意找出能够表示应用题全部含义的一个相等关系;(关键的一步)相等关系;(关键的一步) 3、根据相等关系,正确列出方程,即所列的方程、根据相等关系,正确列出方程,即所列的方程应满足两边的量要相等;方程两边的代数式的单位应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用;要相同;题中条件应充分利用; 4、求出所列方程的解;、求出所列方程的解; 5、检验后明确地、完整地写出答案(注意单位)、检验后明确地、完整地写出答案(注意单位)这里要求的检验应是,检验所求出的解既能使方程这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。成立,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 七年 级数 上册 复习 课件 ppt
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内