统计热力学基础ppt课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《统计热力学基础ppt课件.ppt》由会员分享,可在线阅读,更多相关《统计热力学基础ppt课件.ppt(60页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、统计热力学基础统计热力学基础1 概论概论统计热力学的研究方法统计热力学的基本任务统计系统的分类统计热力学的基本假定18751875年,克劳修斯提出:气体分子均方速度、年,克劳修斯提出:气体分子均方速度、平均自由程和分子碰撞数等重要概念;平均自由程和分子碰撞数等重要概念;18601860年,麦克斯韦导出分子速度分布定律;年,麦克斯韦导出分子速度分布定律;18681868年,玻尔兹曼将重力场引入分子速度分布年,玻尔兹曼将重力场引入分子速度分布定律,得到熵的统计意义,形成定律,得到熵的统计意义,形成麦克斯韦麦克斯韦- -玻尔玻尔兹曼统计法兹曼统计法,这是建立在经典力学基础上的,亦,这是建立在经典力学
2、基础上的,亦称称经典统计经典统计;主要用于分子间无相互作用的体系;主要用于分子间无相互作用的体系如低压气体,稀溶液的溶质等;如低压气体,稀溶液的溶质等; 2020世纪初,诞生了量子力学,微观粒子的运动世纪初,诞生了量子力学,微观粒子的运动用波函数或量子态描述,开始形成量子统计法用波函数或量子态描述,开始形成量子统计法19001900年,普朗克用经典统计法推导黑体辐射方程年,普朗克用经典统计法推导黑体辐射方程时,对谐振子的能量采用量子化处理获得成功;时,对谐振子的能量采用量子化处理获得成功;19051905年,爱因斯坦提出光子学说,年,爱因斯坦提出光子学说,19241924年,玻色年,玻色将黑体
3、视为光子气体重导普朗克的辐射方程也获将黑体视为光子气体重导普朗克的辐射方程也获得成功,在此基础上,爱因斯坦将其进一步推广得成功,在此基础上,爱因斯坦将其进一步推广发展成为发展成为玻色玻色- -爱因斯坦量子统计法爱因斯坦量子统计法1926年,费米发现,涉及到电子、质子和中子年,费米发现,涉及到电子、质子和中子等的某些物质体系,不能应用玻色等的某些物质体系,不能应用玻色-爱因斯坦统爱因斯坦统计,其量子态受到泡利不相容原理制约,费米和计,其量子态受到泡利不相容原理制约,费米和狄拉克提出另一种量子统计法狄拉克提出另一种量子统计法费米费米-狄拉克狄拉克统计统计。经典统计和量子统计都是根据概率论,以微观粒
4、经典统计和量子统计都是根据概率论,以微观粒子为统计单位进行统计计算,两者的不同在于所子为统计单位进行统计计算,两者的不同在于所选用的粒子运动(力学)模型不同。选用的粒子运动(力学)模型不同。1902年,吉布斯创立了年,吉布斯创立了统计系综统计系综理论(对微观状态求理论(对微观状态求加权平均),使统计力学的应用范围扩大,原则上可以加权平均),使统计力学的应用范围扩大,原则上可以应用于实际气体、流体混合物、液态、固态、电解质溶应用于实际气体、流体混合物、液态、固态、电解质溶液、高分子体系、气液、高分子体系、气-液和液液和液-液的临界现象,以及超流液的临界现象,以及超流和超导等领域。实际尚不能做到,
5、关键是数学问题,难和超导等领域。实际尚不能做到,关键是数学问题,难以得到联系宏观平衡性质和粒子微观特性的解析式。为以得到联系宏观平衡性质和粒子微观特性的解析式。为得到解析式,现在发展的数学方法有:维里展开法,分得到解析式,现在发展的数学方法有:维里展开法,分布函数的积分方程法,微扰法,密度泛函法,重整化群布函数的积分方程法,微扰法,密度泛函法,重整化群法等,利用计算机的优势的蒙特卡罗法和分子动态学法法等,利用计算机的优势的蒙特卡罗法和分子动态学法(得到宏观性质的数值解)。(得到宏观性质的数值解)。统计热力学的研究方法统计热力学的研究方法 物质的宏观性质本质上是微观粒子不停地运动的客观反应。虽然
6、每个粒子都遵守力学定律,但是无法用力学中的微分方程去描述整个体系的运动状态,所以必须用统计学的方法。 根据统计单位的力学性质(例如速度、动量、位置、振动、转动等),经过统计平均推求体系的热力学性质,将体系的微观性质与宏观性质联系起来,这就是统计热力学的研究方法。统计热力学的基本任务统计热力学的基本任务根据对物质结构的某些基本假定,以及实验所得的光谱数据,求得物质结构的一些基本常数,如核间距、键角、振动频率等,从而计算分子配分函数。再根据配分函数求出物质的热力学性质,这就是统计热力学的基本任务。统计热力学的基本任务统计热力学的基本任务该方法的局限性:计算时必须假定结构的模型,而人们对物质结构的认
7、识也在不断深化,这势必引入一定的近似性。另外,对大的复杂分子以及凝聚体系,计算尚有困难。该方法的优点: 将体系的微观性质与宏观性质联系起来,对于简单分子计算结果常是令人满意的。不需要进行复杂的低温量热实验,就能求得相当准确的熵值。统计体系的分类统计体系的分类目前,统计主要有三种:一种是Maxwell-Boltzmann统计,通常称为Boltzmann统计。1900年Plonck提出了量子论,引入了能量量子化的概念,发展成为初期的量子统计。 在这时期中,Boltzmann有很多贡献,开始是用经典的统计方法,而后来又有发展,加以改进,形成了目前的Boltzmann统计。统计体系的分类统计体系的分类
8、 1924年以后有了量子力学,使统计力学中力学的基础发生改变,随之统计的方法也有改进,从而形成了Bose-Einstein统计和Fermi-Dirac统计,分别适用于不同体系。 但这两种统计在一定条件下通过适当的近似,可与Boltzmann统计得到相同结果。统计热力学的基本假定统计热力学的基本假定概率指某一件事或某一种状态出现的机会大小。热力学概率 体系在一定的宏观状态下,可能出现的微观总数,通常用 表示。统计热力学的基本假定统计热力学的基本假定等概率假定 例如,某宏观体系的总微态数为 ,则每一种微观状态 P出现的数学概率都相等,即:1P 对于U, V 和 N 确定的某一宏观体系,任何一个可能
9、出现的微观状态,都有相同的数学概率,所以这假定又称为等概率原理。2 Boltzmann 统计统计定位体系的微态数定位体系的最概然分布简并度有简并度时定位体系的微态数非定位体系的最概然分布Boltzmann公式的其它形式熵和亥氏自由能的表示式定位体系的微态数定位体系的微态数一个由 N 个可区分的独立粒子组成的宏观体系,在量子化的能级上可以有多种不同的分配方式。设其中的一种分配方式为:1212 iiNNN能级:,一种分配方式:, ,定位体系的微态数定位体系的微态数这种分配的微态数为:12! (!1)! iiNNNNN121NNiNNNCC111212!()!()!()!NNNNNNNNNN分配方式
10、有很多,总的微态数为:! (2)iiiiiNN 无论哪种分配都必须满足如下两个条件: (3) (4)iiiiiNNNU定位体系的最概然分布定位体系的最概然分布 每种分配的 值各不相同,但其中有一项最大值 ,在粒子数足够多的宏观体系中,可以近似用 来代表所有的微观数,这就是最概然分布。maxmaxi , !iiiiiiiiiNNNNUN求极值,使 问题在于如何在两个限制条件下,找出一种合适的分布 ,才能使 有极大值,在数学上就是求(1)式的条件极值的问题。即:iN定位体系最概然分布定位体系最概然分布 首先用Stiring公式将阶乘展开,再用Lagrange乘因子法,求得最概然的分布为: 式中 和
11、 是Lagrange乘因子法中引进的待定因子。iiNe lnln iiNe或用数学方法可求得: iiNee 1-kT/*/iikTikTieNNemax* !iiN!N所以最概然分布公式为:简并度简并度 能量是量子化的,但每一个能级上可能有若干个不同的量子状态存在,反映在光谱上就是代表某一能级的谱线常常是由好几条非常接近的精细谱线所构成。 量子力学中把能级可能有的微观状态数称为该能级的简并度,用符号 表示。简并度亦称为退化度或统计权重。ig简并度简并度例如,气体分子平动能的公式为:2222xyz3/2()8ihnnnmV式中 分别是在 轴方向的平动量子数,当 则 只有一种可能的状态,则 ,是非
12、简并的. xyz,n nn和zyx和,23/ 238ihmVxyz1,1,1,nnn1ig 简并度简并度xyz nnn 这时,在 相同的情况下,有三种不同的微观状态,则 。i3ig 23/268ihmV当2 1 11 2 1 1 1 2有简并度时定位体系的微态数有简并度时定位体系的微态数121212 , , , , , , , , , iiigggNNN能级各能级简并度一种分配方式设有 N 个粒子的某定位体系的一种分布为:有简并度时定位体系的微态数有简并度时定位体系的微态数11NNC 先从N个分子中选出N1个粒子放在 能极上,有 种取法; 但 能极上有 个不同状态,每个分子在 能极上都有 种放
13、法,所以共有 种放法;11g11g11Ng 这样将N1个粒子放在 能极上,共有 种微态数。依次类推,这种分配方式的微态数为:111NNNCg1有简并度时定位体系的微态数有简并度时定位体系的微态数11221112()()NNNNNNNgCgC121121212()! !()!()!NNNNNggNNNNNNN121212i!NNNggNNN!iNiiigNN例 有七个独立的可区别的粒子,分布在简并度为1,3和2的1 ,2和3三个能级中,数目分别为3, 3,1,问这种分布拥有多少微观状态? iinixngNi! 7560! 12! 33! 31!7133 解:根据题意N= 71 , 2, 3 gi
14、 1, 3, 2; ni 3, 3, 1;将相应数据代入下列公式 :有简并度时定位体系的微态数有简并度时定位体系的微态数( , ,)!iNiiiigU V NNN 由于分配方式很多,所以在U、V、N一定的条件下,所有的总微态数为: iiiiiNNNU求和的限制条件仍为:有简并度时定位体系的微态数有简并度时定位体系的微态数/*/iikTiikTiig eNNg e 与不考虑简并度时的最概然分布公式相比,只多了 项。ig 再采用最概然分布概念,用Stiring公式和Lagrange乘因子法求条件极值,得到微态数为极大值时的分布方式 为:imax*iN非定位体系的最概然分布非定位体系的最概然分布1(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 统计 热力学 基础 ppt 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内