二次根式的乘除(第12课时)优质ppt课件.ppt
《二次根式的乘除(第12课时)优质ppt课件.ppt》由会员分享,可在线阅读,更多相关《二次根式的乘除(第12课时)优质ppt课件.ppt(54页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第16章 二次根式16.2 二次根式的乘除 1.1.什么叫什么叫二次根式二次根式?a2.2.二次根式的二次根式的两个两个基本性质基本性质: :复习回顾复习回顾=a=a(a(a0)0)2a2a(a(a0)0)= a a (a(a0)0)aa a -a-a 3.填空填空:4.计算计算: 22212110_, 22_, 3_.57 224214153532525352、二次根式有哪些性质、二次根式有哪些性质?21 0aaa性 质10552712512|aa00a aa a性质性质2 1、什么叫二次根式?、什么叫二次根式?内容:内容:课本课本 P6P67 7 要求:要求:1.1.填写填写“探究探究”内
2、容,总结二次根式的乘法法则内容,总结二次根式的乘法法则2.2.二次根式的乘法公式的逆运用的作用是什么?二次根式的乘法公式的逆运用的作用是什么?3.3.例例2 2你有其他解法吗?你有其他解法吗?4.4.完成完成P7P7练习练习1-31-3时间:时间:1010分钟分钟读书指导读书指导计算下列各式计算下列各式, 观察计算结果观察计算结果,你发现什么规律你发现什么规律41、 =_9_94_2516_,25162、用你发现的规律填空用你发现的规律填空,并用计算器验算并用计算器验算10_522; 6_321、思考:abba (a0,b0)合作学习合作学习662020一般地一般地,对于二次根式的乘法规定对于
3、二次根式的乘法规定:a、b必须都是非负数!必须都是非负数!abba 算术平方根的积等于各个被开方数积的算算术平方根的积等于各个被开方数积的算术平方根术平方根(a0,b0)一、二次根式乘法法则:一般地有一、二次根式乘法法则:一般地有0)0)b b0,0,(a(a b ba ab ba a 二次根式与二次根式相乘,等于各二次根式与二次根式相乘,等于各被开数的积的算术平方根。被开数的积的算术平方根。扩充:扩充:kbakba 有什么限制?、是否相等?与cbacbaabc)1(44bc4a)2(化简:abba (a0,b0)算术平方根的积等于各个被开方数积的算算术平方根的积等于各个被开方数积的算术平方根
4、术平方根27312531:1、计算例1553392731练习练习:计算计算3221)2(76) 1 (76) 1 (解解:42763221)2(4163221反过来:反过来:baab (a0,b0)abba(a0,b0)一般的:一般的:在本章中,在本章中,如果没有特别说明,所有的字母都表示正数如果没有特别说明,所有的字母都表示正数;42811612.32ba);()(化简:例8116(1):解8116 36943242ba)(324ba bba22bba22abba ) 0, 0(babab2 想一想?想一想? )9()4()9()4(成立吗?为什么?成立吗?为什么?abba )0,0(ba非
5、非负负数数636)9()4(例题例题 计算:计算: 714.1 10253 .2 xyx313.3同学们自己来算吧!同学们自己来算吧!看谁算得既快又准确!看谁算得既快又准确!化简二次根式的步骤:化简二次根式的步骤:1.将被开方数尽可能分解成几个平方数将被开方数尽可能分解成几个平方数.2.应用应用baab3.将平方项应用将平方项应用 化简化简.aa 2) 0( a1. 3 22 3 . 6 6.12.36.6 5ABCD的值是(的值是( )2. ( 23)3. 9.36.8.63ABCD的值是(的值是( )3.23xx 2.6. 6.6.6AxBxCxDx的值是(的值是( )ABA当堂检测当堂检
6、测4. 估计估计1832的运算结果应在(的运算结果应在( )A、1到到2之间之间 B、2到到3之间之间C、3到到4之间之间 D、4到到5之间之间C当堂检测当堂检测5. 比较大小比较大小62_33-23_32当堂检测当堂检测7.将下列式子中根号外的因数(因式)移到根号内将下列式子中根号外的因数(因式)移到根号内._1)2_(323).1 (aa_111. 62成立的条件等式xxxabaDabaCabaBabaAbaba.)(,. 8*3的正确结果是化简二次根式已知A11x6a思考题:思考题:已知.12319999)99)(99(22的值)求(xxxxxxxx=探索与交流探索与交流填空:填空:=比
7、较左右两边的等式,你发现了什么?比较左右两边的等式,你发现了什么?你能用语言和字母表示你发现的规律吗?你能用语言和字母表示你发现的规律吗?(a0,b0)(a0,b0)664.4721359554.4721359550.750.751.2247448711.224744871探索发现:探索发现:._94_,94)1(2) 25 49_, 2549_663535于是我们得到:于是我们得到:)0, 0(bababa特特别别提提醒醒1,记住二次根式的存在条件;,记住二次根式的存在条件;2,性质的逆运用;,性质的逆运用;121212.0)nnnaaaaaaaaa( 、3,推广式:,推广式:abmnbna
8、mabbabaab34)3(1527)2(12) 1 (a 94,94.1 4916,4916.29494491649160, 0bababa两个二次根式相除,等于把被开方数相除,两个二次根式相除,等于把被开方数相除,作为商的被开方数作为商的被开方数32327474计算下列各式计算下列各式,观察计算结果观察计算结果,你发现什么规律你发现什么规律?3232(3)5252规律规律:._94_;94) 1 (._22581_;22581)2(23233535于是我们得到:于是我们得到:(0,0)aaabbb特别注意:特别注意:1 1,条件;,条件; 2 2,逆运用。,逆运用。探索发现:探索发现:(1
9、) 若若 成立成立, 则则 满足条件满足条件_.(2)(3)23xxxxx-2x3(2) 若若 成立成立,则则 满足条件满足条件 .2233xxxxx3020 xx3020 xx-2x0)化简二次根化简二次根式的一般步式的一般步骤如何?骤如何?(1) 分解质因数;分解质因数;化带分数为化带分数为假分数假分数;处理好被开方数中的符号;处理好被开方数中的符号;(2)根号内分数的分子、分母根号内分数的分子、分母同同乘一个数,使乘一个数,使分母成一个正整数的平方分母成一个正整数的平方;(3)运用二次根式的性质化简。运用二次根式的性质化简。1 32()2:42解 原式24例例1.利用性质利用性质,化简下
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 根式 乘除 12 课时 优质 ppt 课件
限制150内