最优化理论第一章ppt课件.ppt





《最优化理论第一章ppt课件.ppt》由会员分享,可在线阅读,更多相关《最优化理论第一章ppt课件.ppt(53页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 优化是从处理各种事物的一切可能的方案中,寻求优化是从处理各种事物的一切可能的方案中,寻求最优的方案。最优的方案。 优化的原理与方法,在科学的、工程的和社会的实优化的原理与方法,在科学的、工程的和社会的实际问题中的应用,便是优化问题。际问题中的应用,便是优化问题。 1-1 1-1 绪论绪论 历史上最早记载下来的最优化问题可追溯到古希历史上最早记载下来的最优化问题可追溯到古希腊的欧几里得(腊的欧几里得(EuclidEuclid,公元前,公元前300300年左右),他指出:年左右),他指出:在周长相同的一切矩形中,以正方形的面积为最大。在周长相同的一切矩形中,以正方形的面积为最大。十七、十八世纪十
2、七、十八世纪微积分微积分的建立给出了求函数极值的一的建立给出了求函数极值的一些准则,对最优化的研究提供了某些理论基础。然而,些准则,对最优化的研究提供了某些理论基础。然而,在以后的两个世纪中,最优化技术的进展缓慢,主要在以后的两个世纪中,最优化技术的进展缓慢,主要考虑了有约束条件的最优化问题,发展了考虑了有约束条件的最优化问题,发展了变分法变分法。 直到上世纪直到上世纪4040年代初,由于军事上的需要产生了年代初,由于军事上的需要产生了运筹学运筹学,并使优化技术首先应用于解决战争中的实际,并使优化技术首先应用于解决战争中的实际问题,例如轰炸机最佳俯冲轨迹的设计等。问题,例如轰炸机最佳俯冲轨迹的
3、设计等。 近十几年来,最优化方法已陆续用到建筑结构、近十几年来,最优化方法已陆续用到建筑结构、化工、冶金、铁路、航天航空、造船、机床、汽车、化工、冶金、铁路、航天航空、造船、机床、汽车、自动控制系统、电力系统以及电机、电器等工程设计自动控制系统、电力系统以及电机、电器等工程设计领域,并取得了显著效果。领域,并取得了显著效果。 50年代末年代末数学规划方法数学规划方法被首次用于结构最优化,并被首次用于结构最优化,并成为优化设计中求优方法的理论基础。数学规划方法是成为优化设计中求优方法的理论基础。数学规划方法是在第二次世界大战期间发展起来的一个新的数学分支,在第二次世界大战期间发展起来的一个新的数
4、学分支,线性规划与非线性规划是其主要内容。线性规划与非线性规划是其主要内容。 大型电子计算机的出现,使最优化方法及其理论蓬大型电子计算机的出现,使最优化方法及其理论蓬勃发展,成为应用数学中的一个重要分支,并在许多科勃发展,成为应用数学中的一个重要分支,并在许多科学技术领域中得到应用。学技术领域中得到应用。人类智能优化人类智能优化:与人类史同步,直接凭借人类的:与人类史同步,直接凭借人类的直觉或逻辑思维,如黄金分割法、穷举法和瞎子爬山法等。直觉或逻辑思维,如黄金分割法、穷举法和瞎子爬山法等。l 第二阶段第二阶段数学规划方法优化数学规划方法优化:从三百多年前牛顿发明微:从三百多年前牛顿发明微积分算
5、起,电子计算机的出现推动数学规划方法在近五十年来积分算起,电子计算机的出现推动数学规划方法在近五十年来得到迅速发展。得到迅速发展。l 第三阶段第三阶段工程优化工程优化:近二十余年来,计算机技术的发展:近二十余年来,计算机技术的发展给解决复杂工程优化问题提供了新的可能,非数学领域专家开给解决复杂工程优化问题提供了新的可能,非数学领域专家开发了一些工程优化方法,能解决不少传统数学规划方法不能胜发了一些工程优化方法,能解决不少传统数学规划方法不能胜任的工程优化问题。在处理多目标工程优化问题中,基于经验任的工程优化问题。在处理多目标工程优化问题中,基于经验和直觉的方法得到了更多的应用。优化过程和方法学
6、研究,尤和直觉的方法得到了更多的应用。优化过程和方法学研究,尤其是建模策略研究引起重视,开辟了提高工程优化效率的新的其是建模策略研究引起重视,开辟了提高工程优化效率的新的途径。途径。l 第四阶段第四阶段现代优化方法:现代优化方法:如遗传算法、如遗传算法、 模拟退火算法、模拟退火算法、 蚁群算法、蚁群算法、 神经网络算法等,并采用专家系统技术实现寻优神经网络算法等,并采用专家系统技术实现寻优策略的自动选择和优化过程的自动控制,智能寻优策略迅速发策略的自动选择和优化过程的自动控制,智能寻优策略迅速发展。展。 已知:制造一体积为已知:制造一体积为100m100m3 3,长度不小于,长度不小于5m5m
7、,不,不带上盖的箱盒,试确定箱盒的长带上盖的箱盒,试确定箱盒的长x x1 1,宽,宽x x2 2,高,高x x3 3,使箱盒用料最省。使箱盒用料最省。 分析:分析:(1 1)箱盒的表面积的表达式;)箱盒的表面积的表达式;(2 2)优化变量确定:长)优化变量确定:长x x1 1,宽,宽x x2 2,高,高x x3 3 ;(3 3)优化约束条件:)优化约束条件: (a a)体积要求;)体积要求; (b b)长度要求;)长度要求;x x1 1x x2 2x x3 3箱盒的优化问题箱盒的优化问题1-2 1-2 优化问题示例优化问题示例123,x xx122313min2()Sx xx xx x1231
8、23500100 xxxx x x优化变量:优化变量:目标函数:目标函数:约束条件:约束条件: 某工厂生产某工厂生产A A 和和B B 两种产品,两种产品,A A 产品单位价格产品单位价格为为P PA A 万元,万元, B B 产品单位价格为产品单位价格为P PB B 万元。每生产一个单位万元。每生产一个单位A A 产品需消耗煤产品需消耗煤a aC C 吨,电吨,电a aE E 度,人工度,人工a aL L 个人日;每生产个人日;每生产一个单位一个单位B B 产品需消耗煤产品需消耗煤b bC C 吨,电吨,电b bE E 度,人工度,人工b bL L 个人日。个人日。现有可利用生产资源煤现有可
9、利用生产资源煤C C 吨,电吨,电E E 度,劳动力度,劳动力L L 个人日,个人日,欲找出其最优分配方案,使产值最大。欲找出其最优分配方案,使产值最大。 分析:分析:(1 1)产值的表达式;)产值的表达式;(2 2)优化变量确定:)优化变量确定: A A 产品产品x xA A, B B 产品产品x xB B ;(3 3)优化约束条件:)优化约束条件: (a a)生产资源煤约束;)生产资源煤约束; (b b)生产资源电约束;)生产资源电约束; (b b)生产资源劳动力约束;)生产资源劳动力约束;最大产值生产资源分配问题最大产值生产资源分配问题 ,ABxxmaxAABBPP xP xCACBEA
10、EBLALBa xb xCa xb xEa xb xL优化变量:优化变量:目标函数:目标函数:约束条件:约束条件:1.1.优化变量优化变量 一个优化问题可以用一组基本参数的数值来表一个优化问题可以用一组基本参数的数值来表示,在优化过程中进行选择并最终必须确定的各项示,在优化过程中进行选择并最终必须确定的各项独立的基本参数,称作独立的基本参数,称作优化变量优化变量,又叫做,又叫做决策变量决策变量。 最优化的数学模型是描述实际优化问题目标函数、最优化的数学模型是描述实际优化问题目标函数、变量关系、有关约束条件和意图的数学表达式,它变量关系、有关约束条件和意图的数学表达式,它反映了物理现象各主要因素
11、的内在联系,是进行最反映了物理现象各主要因素的内在联系,是进行最优化的基础。优化的基础。 优化变量的全体实际上是一组变量,可用一个列优化变量的全体实际上是一组变量,可用一个列向量表示。优化变量的数目称为优化问题的维数,如向量表示。优化变量的数目称为优化问题的维数,如n n个优化变量,则称为个优化变量,则称为n n维优化问题维优化问题。1212 ,Tnnxxx xxxx 按照优化变量的取值特点,可分为按照优化变量的取值特点,可分为连续变量连续变量(例(例如轴径、轮廓尺寸等)和如轴径、轮廓尺寸等)和离散变量离散变量(例如各种标准规格(例如各种标准规格等)。等)。 图1-1 优化变量所组成的优化空间
12、优化变量所组成的优化空间(a a)二维问题)二维问题 (b b)三维问题)三维问题 只有两个优化变量的二维优化问题可用图(只有两个优化变量的二维优化问题可用图(a a)所示的平面直角坐标表示;有三个优化变量的三维所示的平面直角坐标表示;有三个优化变量的三维问题可用图(问题可用图(b b)所表示的空间直角坐标表示。)所表示的空间直角坐标表示。 优化问题的维数表征优化的自由度,优化变量愈优化问题的维数表征优化的自由度,优化变量愈多,则问题的自由度愈大、可供选择的方案愈多,但多,则问题的自由度愈大、可供选择的方案愈多,但难度亦愈大、求解亦愈复杂。难度亦愈大、求解亦愈复杂。 小型优化问题:小型优化问题
13、:一般含有一般含有2 21010个优化变量;个优化变量; 中型中型优化优化问题:问题:10105050个个优化优化变量;变量; 大型大型优化优化问题:问题:5050个以上的个以上的优化优化变量。变量。 如何选定优化变量如何选定优化变量? 任何一项产品,是众多变量标志结构尺寸的综合体。变量任何一项产品,是众多变量标志结构尺寸的综合体。变量越多,可以淋漓尽致地描述产品结构,但会增加建模的难度和越多,可以淋漓尽致地描述产品结构,但会增加建模的难度和造成优化规模过大。所以确定优化变量时应注意以下几点:造成优化规模过大。所以确定优化变量时应注意以下几点: (1 1)抓主要,舍次要。抓主要,舍次要。 对产
14、品性能和结构影响大的参数可取为优化变量,影响小对产品性能和结构影响大的参数可取为优化变量,影响小的可先根据经验取为试探性的常量,有的甚至可以不考虑。的可先根据经验取为试探性的常量,有的甚至可以不考虑。(2 2)根据要解决问题的特殊性来选择优化变量。根据要解决问题的特殊性来选择优化变量。 例如,圆柱螺旋拉压弹簧的优化变量有例如,圆柱螺旋拉压弹簧的优化变量有4 4个,即钢丝直径个,即钢丝直径d d,弹簧中径,弹簧中径D D,工作圈数,工作圈数n n和自由高度和自由高度H H。在建模中,将材料的许。在建模中,将材料的许用剪切应力用剪切应力 和剪切模量和剪切模量等作为优化常量。在给定径向空间内等作为优
15、化常量。在给定径向空间内设计弹簧,则可把弹簧中径设计弹簧,则可把弹簧中径D D作为优化常量。作为优化常量。 优化问题中有些是工程上所不能接受的,在优化优化问题中有些是工程上所不能接受的,在优化中对优化变量取值有一些限制条件,这些限制条件称中对优化变量取值有一些限制条件,这些限制条件称作作约束条件约束条件,简称,简称约束约束。 约束又可按其数学表达形式分成等式约束和约束又可按其数学表达形式分成等式约束和不等式约束两种类型:不等式约束两种类型:(1)(1)等式约束等式约束(2)(2)不等式约束不等式约束( )0hx( )0gx根据约束的性质可以把它们区分成:根据约束的性质可以把它们区分成:性能约束
16、性能约束针对性能要求而提出的限制条件称作性能针对性能要求而提出的限制条件称作性能约束。例如,选择某些结构必须满足受力的强度、刚度约束。例如,选择某些结构必须满足受力的强度、刚度或稳定性等要求;或稳定性等要求;边界约束边界约束只是对设计变量的取值范围加以限制的约只是对设计变量的取值范围加以限制的约束称作边界约束。例如,允许机床主轴选择的尺寸范围,束称作边界约束。例如,允许机床主轴选择的尺寸范围,对轴段长度的限定范围就属于边界约束。对轴段长度的限定范围就属于边界约束。图图1-2 1-2 优化问题中的约束面(或约束线)优化问题中的约束面(或约束线) (a)(a)二变量问题的约束线二变量问题的约束线
17、(b) (b) 三变量问题的约束面三变量问题的约束面 如图如图1-31-3上画出了满足两项约束条件上画出了满足两项约束条件g1(X)=x12x2216 0和和g2(X)2x20的的二维设计问题的可行域二维设计问题的可行域D D,它位于,它位于x2 2=2=2的上面和的上面和圆圆 x1 12 2x2 22 2=16=16的圆弧的圆弧ABCABC下面并包括线段下面并包括线段ACAC和圆弧和圆弧ABCABC在内。在内。图图1-3 1-3 约束条件规定的可行域约束条件规定的可行域D D 可行域可行域 : : 在优化问题中,满足所有约束条件的点所构成在优化问题中,满足所有约束条件的点所构成的集合。的集合
18、。 满足满足 的约束为起作用约束的约束为起作用约束, ,否则为否则为不起作用的约束不起作用的约束.(.(等式等式约束一定是起作用约束约束一定是起作用约束) )一般情况下,可行域可表示为:一般情况下,可行域可表示为:mjxhluxgxDju, 2 , 10)(, 2 , 10)(不可行域不可行域: :可行点和不可行点可行点和不可行点 D D内的点为可行点内的点为可行点, ,否则为不可否则为不可行点(外点)。行点(外点)。边界点与内点边界点与内点约束边界上的可行点为边界点约束边界上的可行点为边界点, ,其其余可行点为内点。余可行点为内点。起作用的约束与不起作用的约束起作用的约束与不起作用的约束D0
19、)(*Xgu 在优化过程中,通过优化变量的不断向在优化过程中,通过优化变量的不断向f(X)值改善的方向值改善的方向自动调整,最后求得自动调整,最后求得f f( (X X) )值最好或最满意的值最好或最满意的X值。在构造目标值。在构造目标函数时,目标函数的最优值可能是最大值,也可能是最小值。函数时,目标函数的最优值可能是最大值,也可能是最小值。在机械设计中,可作为参考目标函数的有:在机械设计中,可作为参考目标函数的有: 体积最小、重量最轻、效率最高、承载能力最大、结构体积最小、重量最轻、效率最高、承载能力最大、结构运动精度最高、振幅或噪声最小、成本最低、耗能最小、动运动精度最高、振幅或噪声最小、
20、成本最低、耗能最小、动负荷最小等等。负荷最小等等。 12()()nf Xf xxx, , , 为了对优化进行定量评价,必须构造包含优化变量的评价为了对优化进行定量评价,必须构造包含优化变量的评价函数,它是优化的目标,称为函数,它是优化的目标,称为目标函数目标函数,以,以f(X)表示。表示。 在优化问题中,可以只有一个目标函数,称为在优化问题中,可以只有一个目标函数,称为单目单目标函数标函数。当在同一设计中要提出多个目标函数时,这种。当在同一设计中要提出多个目标函数时,这种问题称为问题称为多目标函数多目标函数的最优化问题。在一般的最优化问的最优化问题。在一般的最优化问题中,多目标函数的情况较多。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优化 理论 第一章 ppt 课件

限制150内