二次函数的值域ppt课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《二次函数的值域ppt课件.ppt》由会员分享,可在线阅读,更多相关《二次函数的值域ppt课件.ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、小结与反思间区定轴定动轴定区间在R上求值域课程导航定轴动区间作业与研究课程导航探索与反思动轴定区间在R上求值域定轴动区间作业与研究间区定轴定二次函数在R上的值域和图像求下列函数的值域、最值.34)(2xxxf3431)(2xxxf画板画板演示画板求函数f(x)=x2+2x-4在下列条件下的值域x-4,-2,x-3,2x0,3定轴定区间上的值域画板演示动轴定区间上的值域画板已知函数 当 时,求函数的最大值.22)(22aaxxxf 3 , 1x.2)(22)(222axaxaaxxxf对称轴为解:(画板演示)116)3()(.112maxaafxfa时、当116)3()(.2122maxaafx
2、fa时、当32)1()(3232maxaafxfa时,、当32)1()(342maxaafxfa时,、当31xy20X=aX=a31xy2031xy2X=a0031xy2X=a综上可知:综上可知:32116)(22maxaaaaxf)2( a)2(a已知函数 当 时,求函数的最小值.22)(22aaxxxf 3 , 1x会吗?会吗?画板(画板演示)X=a31xy2031xy2X=a0定轴动区间上的值域画板已知函数当时,求函数的最大值与最小值?2( )23.3f xxx1,ttx)(xf(画板演示)例题讲解:例题讲解: 例例1 设函数设函数 f(x) =x2- -2x-3.3在区间在区间t,t+
3、1上的最小值上的最小值为为g(t),求,求g(t)的解析式。的解析式。分析分析解:解:f(x)=(x- -1)2-4.3,对称轴为,对称轴为x=1 (2)当当0t 1时,则时,则g(t)=f(1)=-4.3; (1)当当t1时,则时,则g(t)=f(t)=t2- -2t-3.3; (3)当当t+11,即,即t0时,则时,则g(t)=f(t+1)=t2-4.3;t2- -2t-3.3;(0t 1)g(t)=(t1)返回下页上页变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分22.若若 1x3, a 为何值时为
4、何值时, x2- -5x+3+a=0 有两解有两解, 一解一解, 无解无解? 解解: 原方程即为原方程即为 a=- -x2+5x- -3 (1) 作出函数作出函数 y=- -x2+5x- -3( (1x3) )的图象的图象, 显然该显然该图象与直线图象与直线 x=a 的交点的横坐标是方程的交点的横坐标是方程 (1) 的解的解. 由由图象知图象知: 当当 3a 时时, 原方程有两解原方程有两解; 413当当 1 时时, 原方程无解原方程无解. 413123xy13o413y=a 探索与反思探索解法考察对称轴x=?与区间相对位置关系左中右,画图解之反思数学思想的应用解此类题用了哪些数学思想1.一般
5、式一般式: y=ax2+bx+c( (a0) );一、二次函数的解析式一、二次函数的解析式2.顶点式顶点式: y=a(x - -m)2+n( (其中其中(m, n)为抛物线的顶点坐标为抛物线的顶点坐标) );3.两根式两根式: y=a(x - -x1)(x - -x2)( (其中其中x1, x2为抛物线与为抛物线与 x 轴两交点轴两交点 的横坐标的横坐标) ); 注注: 求二次函数的解析式求二次函数的解析式, 一般都采用待定系数法一般都采用待定系数法. 做题时做题时,要根据题设条件要根据题设条件, 合理地设出解析式合理地设出解析式. 二、二次函数的图象二、二次函数的图象有关知识有关知识: 图象
6、形状图象形状; 对称轴对称轴; 顶点坐标顶点坐标; 与与 x 轴交点坐标轴交点坐标;截截 x 轴线段长轴线段长.三、二次函数的性质三、二次函数的性质1.当当 a0 时时, 抛物线开口向上抛物线开口向上, 函数在函数在(-(-, - - 上单调递上单调递减减, 在在- - , +)上单调递增上单调递增, 当当 x= - - 时时, f(x) 取得最小值取得最小值,为为 .2ab2ab2ab4a4ac- -b2 2.当当 a0)在在m, n上的最值上的最值2.若若 x0 m, n, 则则(1)当当 x0n 时时, f(x)min=f(n), f(x)max=f(m).五、不等式五、不等式 ax2+
7、bx+c0 恒成立问题恒成立问题1.若若 x0=- - m, n, 则则 f(x)min=f(x0)= , f(m), f(n) 中中的较大者即为的较大者即为 f(x) 在在 m, n 上的最大值上的最大值.2ab4a4ac- -b2 1. ax2+bx+c0在在R上恒成立上恒成立. a0=b2- -4ac0. 或或ax2+bx+c0在在R上恒成立上恒成立. a0=b2- -4ac0, a=b=0 c0(a0) 在在 m, n 上恒成立上恒成立. f(m)0, - - m 2ab=b2- -4ac0. - - n 2ab或或 f(x)min0( (xm, n) ) 3一元二次方程实根的分布一般
8、地,方程f(x)=ax2+bx+c(a0)的根x1,x2的分布所满足的充要条件如下表:根的分布图像充要条件x1x2kKx1x2()020fkbka( )020fkbka根的分布图像充要条件x1kx2f(k)0K1x1x2K2K1x1x2K2K31212()0()020fkfkbkka 123( )0()0()0f kf kf kf(x)=ax2+bx+c0) 在在 m, n 上恒成立上恒成立. f(n)0. f(m)0) 的实根分布问题的实根分布问题记记 f(x)=ax2+bx+c(a0),=b2- -4ac0. x1+x2=- - 0 abacx1x2= 0 =b2- -4ac0 f(0)0
9、. - - 0 2ab2.方程方程 f(x)=0 有两负根有两负根 =b2- -4ac0. x1+x2=- - 0 =b2- -4ac0 f(0)0. - - 0. - - k 2ab3.方程方程 f(x)=0 有一正根一负根有一正根一负根 c0.5.方程方程 f(x)=0 的两实根一个大于的两实根一个大于 k, 另一个小于另一个小于 k f(k)0. - - k 2ab7.方程方程 f(x)=0 的两实根都在区间的两实根都在区间(m, n)内内 f(m)0 =b2- -4ac0 m - - 0. 8.方程方程 f(x)=0 的两实根中的两实根中, 有且只有一个在区间有且只有一个在区间(m,
10、n)内内. f(m)f(n)0, 或或f(m)=0 m - - , 2abm+n 2 - - n. 2abm+n 2f(n)=0 或或 思考思考 方程的两根有且只有一个在区间方程的两根有且只有一个在区间m, n上时等价于上时等价于?9.方程方程 f(x)=0 的两根分别在区间的两根分别在区间(m, n)和和(p, q)( (n0 f(n)0 f(p)0. 注注 涉及方程涉及方程 f(x)=ax2+bx+c=0(a0)的实根分的实根分布问题布问题, 一般情况下要从四个方面考虑一般情况下要从四个方面考虑: f(x) 图象的开口方向图象的开口方向; 方程方程 f(x)=0的判别式的判别式; 区间端点
11、处函数值的符号区间端点处函数值的符号. f(x) 图象的对称轴与区间的关系图象的对称轴与区间的关系; 0=00)的图象的图象二次函数二次函数y=ax2+bx+cxyx1x2x1=x2xyooxy(a0)的解集的解集ax2+bx+c0 x | x1x0) 的根的根有两相异实根有两相异实根 x1, x2 (x10)的解集的解集Rax2+bx+c0 x | xx2x | x- - 2ab八、典型例题八、典型例题1.已知二次函数已知二次函数 f(x) 满足满足 f(2)=- -1, f(- -1)=- -1, 且且 f(x) 的最大值的最大值是是 8, 试确定此二次函数的解析式试确定此二次函数的解析式
12、.解法一解法一: 利用二次函数的一般式利用二次函数的一般式.故所求函数的解析式为故所求函数的解析式为 f(x)=- -4x2+4x+7. 设设f(x)=ax2+bx+c(a0), 则则4a+2b+c=- -1, a- -b+c=- -1, =8. 4a4ac- -b2 a=- -4, b=4, c=7. 解得解得解法二解法二: 利用二次函数的顶点式利用二次函数的顶点式.设设f(x)=a(x- -m)2+n, f(2)=f(- -1)=- -1, 抛物线的对称轴为直线抛物线的对称轴为直线 x= , 12m= . 12又又 f(x) 的最大值是的最大值是 8, n=8. f(x)=a(x - -
13、)2+8, 12f(2)=- -1, a(2 - - )2+8=- -1, 12a=- -4. 故所求函数的解析式为故所求函数的解析式为f(x)=- -4(x- - )2+8=- -4x2+4x+7. 12解法三解法三: 利用二次函数的两根式利用二次函数的两根式.由已知由已知 f(x)+1=0 的两根为的两根为 2 和和 - -1, 故可设故可设 f(x)+1=a(x- -2)(x+1), 从而从而 f(x)=a(x- -2)(x+1)- -1. 即即 f(x)=ax2- -ax- -2a- -1. 又又 f(x) 的最大值是的最大值是 8,4a4a(- -2a- -1)- -a2 =8, 解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 值域 ppt 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内